Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
FEBS Lett ; 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38969617

RESUMO

Microtubule affinity-regulating kinase 2 (MARK2) is a Ser/Thr protein kinase that regulates cell polarity and immune responses. Here, we report that Orf9b, one of the accessory proteins encoded in the SARS-CoV-2 genome, increases MARK2 activity via interaction with the autoinhibitory KAI domain. We found that co-expression of Orf9b enhances the kinase activity of MARK2 in HEK293 cells. Orf9b does not bind to or enhance the activity of the mutant form of MARK2 lacking the KA1 domain. Orf9b lowers inhibitory phosphorylation of MARK2 at T595 while mutation experiments indicate that this site is dispensable for Orf9b-mediated enhancement of MARK2 activity. Our results suggest that Orf9b enhances MARK2 activity by binding the autoinhibitory KA1 domain, which closely interacts with the kinase domain.

2.
Neurobiol Dis ; 188: 106334, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37884211

RESUMO

Abnormal activation of microtubule affinity-regulating kinase 4 (MARK4) and its phosphorylation of the microtubule-associated protein tau are believed to play a role in the pathogenesis of Alzheimer's disease, and MARK4 inhibition can be a strategy to develop disease-modifying therapy. Here we report the development of a membrane-permeable peptide that inhibits MARK4 activity in an allosteric manner. The SARS-CoV-2-derived protein Orf9b inhibited MARK4-mediated tau phosphorylation in primary neurons and Drosophila. Orf9b inhibited MARK4 activity in an allosteric manner and did not inhibit the activity of MARK2, which is another MARK family member and is closely related to MARK4. Co-expression of Orf9b in the fly retina expressing human tau and MARK4 suppressed phosphorylation of tau at the microtubule-binding repeats and tau-induced neurodegeneration. We identified the minimal sequence of Orf9b required to suppress MARK4 activity and fused it to a cell-permeable sequence (TAT-Orf9b10-18_78-95). Extracellular supplementation of TAT-Orf9b10-18_78-95 inhibited MARK4 activity in primary neurons, and feeding TAT-Orf9b10-18_78-95 to a fly model of tauopathy lowered phospho-tau levels and suppressed neurodegeneration. These results suggest that TAT-Orf9b10-18_78-95 is a unique class of MARK4 inhibitor and can be used to modify tau toxicity.


Assuntos
COVID-19 , Peptídeos Penetradores de Células , Humanos , Animais , Fosforilação , SARS-CoV-2 , Microtúbulos , Drosophila , Proteínas Serina-Treonina Quinases
3.
J Org Chem ; 87(12): 8118-8125, 2022 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-35657258

RESUMO

N-Methyl-2-methoxymethylanilines 1 bearing various 5-substituted-pyrimidin-2-yl groups were prepared, and their rotational behaviors were explored in detail. It was revealed that the rotational barriers around two N-Ar bonds increase in proportion to the electron-withdrawing ability of substituents X at the 5-position.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...