Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Viruses ; 14(12)2022 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-36560683

RESUMO

Grapevine-infecting ampelo- and vitiviruses are transmitted by scale insects belonging to several species, among which is the European fruit lecanium, Parthenolecanium corni (Bouché) (Hemiptera Coccidae). Our objective was to characterize the transmission biology of grapevine leafroll-associated viruses (GLRaV) and grapevine virus A (GVA) by this soft scale species in order to evaluate its ability to spread these viruses. In transmission experiments with nymphs sampled from different vineyards infected with GLRaV 1, 2, 3 and GVA, P. corni transmitted only GLRaV 1 and GVA to healthy vines. GVA was predominantly transmitted along with GLRaV 1, whereas the latter could be transmitted alone from single or co-infected vines. Vineyard-sampled second instar nymphs were more efficient than first instars at transmitting GLRaV 1, whereas both instars displayed similar transmission rates for GVA. Short virus inoculation access periods and the absence of virus in eggs of females living on infected grapevines fulfilled the criteria of non-circulative semi-persistent transmission mode.


Assuntos
Closteroviridae , Hemípteros , Vitis , Animais , Fazendas , Doenças das Plantas , Vírus Satélites
2.
Viruses ; 14(7)2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-35891410

RESUMO

Grapevine-infecting ampelo- and vitiviruses are transmitted by several scale insect species, including the Bohemian mealybug, Heliococcus bohemicus Sulc. Virus infectivity experiments were performed with this species to study the transmission ability of natural populations living in infected vineyards in Alsace, France. Mealybugs were sampled on vines infected by grapevine leafroll-associated viruses (GLRaV-1, -2, and -3) and by grapevine virus A (GVA), either alone or in combinations. Out of six natural populations tested, only one, located at Bennwihr, was able to transmit GLRaV-1 and -3 to healthy vines, though with low transmission rates (1.6 and 11.8%, respectively). Mealybugs from Bennwihr were also able to transmit GLRaV-3 from grapevines of another location where H. bohemicus was not a vector. Conversely, mealybugs from two other locations did not transmit any virus acquired from infected grapevines at Bennwihr. These results suggest differences in vector ability between H. bohemicus populations. Moreover, laboratory experiments were developed to estimate the minimal acquisition and inoculation access periods (AAP and IAP, respectively) for virus transmission of GLRaV-1 and -3, and GVA. First instar nymphs transmitted GLRaV-1 after 6 h AAP, GLRaV-3 and GVA together after 1 h AAP, and the three viruses after only 1 h IAP, supporting a semi-persistent mode of transmission. Second instar nymphs fed on multi-infected grapevine for 72 h then starved or fed on potatoes tested positive by RT-PCR for GLRaV-1 and -3 after up to 35 and 40 days, respectively, contrasting with the short retention times generally observed for mealybugs. These findings provide new knowledge of the vector ability of H. bohemicus.


Assuntos
Closteroviridae , Flexiviridae , Hemípteros , Vitis , Animais , Closteroviridae/genética , Doenças das Plantas
3.
Viruses ; 13(10)2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34696511

RESUMO

The cottony grape scale Pulvinaria vitis is a scale insect colonizing grapevine; however, its capacity as a vector of grapevine viruses is poorly known in comparison to other scale species that are vectors of viral species in the genera Ampelovirus and Vitivirus. The ability of P. vitis to transmit the ampeloviruses Grapevine leafroll-associated viruses [GLRaV]-1, -3, and -4, and the vitivirus Grapevine virus A (GVA), to healthy vine cuttings was assessed. The scale insects used originated from commercial vine plots located in Alsace, Eastern France. When nymphs sampled from leafroll-infected vineyard plants were transferred onto healthy cuttings, only one event of transmission was obtained. However, when laboratory-reared, non-viruliferous nymphs were allowed to acquire viruses under controlled conditions, both first and second instar nymphs derived from two vineyards were able to transmit GLRaV-1 and GVA. This is the first report of GLRaV-1 and GVA transmission from grapevine to grapevine by this species.


Assuntos
Closteroviridae/patogenicidade , Flexiviridae/patogenicidade , Hemípteros/patogenicidade , Animais , Closteroviridae/classificação , Closteroviridae/genética , Flexiviridae/metabolismo , Hemípteros/metabolismo , Insetos Vetores/virologia , Doenças das Plantas/virologia , Vitis/parasitologia
4.
Viruses ; 12(12)2020 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-33339296

RESUMO

Distribution patterns of the European fruit lecanium Parthenolecanium corni (Bouché) and of grapevine leafroll-associated virus-1 (GLRaV-1) and grapevine virus A (GVA) were monitored from 2003 to 2015 in a Riesling vine plot in the northeast of France. Virus spread was compared between two periods: 2003-2008 and 2009-2014. The percentage of infected vines increased from 54 to 78% for GLRaV-1 and from 14 to 26% for GVA. The spatial distribution of viruses and of P. corni was analysed using permutation tests and revealed an aggregative pattern. Virus distribution was not associated with the density of P. corni population on grapevines. However, GLRaV-1 and GVA spread mainly from initially infected vines. New GLRaV-1 and GVA infections were more frequent on vines near primarily infected vines, first anisotropically along the row, then between neighbouring rows. Virus spread was similar to those described in literature with grapevine mealybug species. This slow vine-to-vine progression suggests that P. corni was responsible for the virus spread, in accordance with the low mobility and low transmission capacities of its local population.


Assuntos
Closteroviridae , Fazendas , Flexiviridae , Hemípteros/virologia , Fatores Etários , Idoso , Animais , Demografia , Feminino , Humanos , Masculino , Doenças das Plantas/virologia , Fatores Sexuais , Análise Espacial
5.
Front Microbiol ; 9: 1782, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30210456

RESUMO

In the past decade, high-throughput sequencing (HTS) has had a major impact on virus diversity studies as well as on diagnosis, providing an unbiased and more comprehensive view of the virome of a wide range of organisms. Rather than the serological and molecular-based methods, with their more "reductionist" view focusing on one or a few known agents, HTS-based approaches are able to give a "holistic snapshot" of the complex phytobiome of a sample of interest. In grapevine for example, HTS is powerful enough to allow for the assembly of complete genomes of the various viral species or variants infecting a sample of known or novel virus species. In the present study, a total RNAseq-based approach was used to determine the full genome sequences of various grapevine fanleaf virus (GFLV) isolates and to analyze the eventual presence of other viral agents. From four RNAseq datasets, a few complete grapevine-infecting virus and viroid genomes were de-novo assembled: (a) three GFLV genomes, 11 grapevine rupestris stem-pitting associated virus (GRSPaV) and six viroids. In addition, a novel viral genome was detected in all four datasets, consisting of a single-stranded, positive-sense RNA molecule of 6033 nucleotides. This genome displays an organization similar to Tymoviridae family members in the Tymovirales order. Nonetheless, the new virus shows enough differences to be considered as a new species defining a new genus. Detection of this new agent in the original grapevines proved very erratic and was only consistent at the end of the growing season. This virus was never detected in the spring period, raising the possibility that it might not be a grapevine-infecting virus, but rather a virus infecting a grapevine-associated organism that may be transiently present on grapevine samples at some periods of the year. Indeed, the Tymoviridae family comprises isometric viruses infecting a wide range of hosts in different kingdoms (Plantae, Fungi, and Animalia). The present work highlights the fact that even though HTS technologies produce invaluable data for the description of the sanitary status of a plant, in-depth biological studies are necessary before assigning a new virus to a particular host in such metagenomic approaches.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...