Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neuroinflammation ; 20(1): 139, 2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37296476

RESUMO

BACKGROUND: Autoimmune neuropathies can result in long-term disability and incomplete recovery, despite adequate first-line therapy. Kinesin-5 inhibition was shown to accelerate neurite outgrowth in different preclinical studies. Here, we evaluated the potential neuro-regenerative effects of the small molecule kinesin-5 inhibitor monastrol in a rodent model of acute autoimmune neuropathies, experimental autoimmune neuritis. METHODS: Experimental autoimmune neuritis was induced in Lewis rats with the neurogenic P2-peptide. At the beginning of the recovery phase at day 18, the animals were treated with 1 mg/kg monastrol or sham and observed until day 30 post-immunisation. Electrophysiological and histological analysis for markers of inflammation and remyelination of the sciatic nerve were performed. Neuromuscular junctions of the tibialis anterior muscles were analysed for reinnervation. We further treated human induced pluripotent stem cells-derived secondary motor neurons with monastrol in different concentrations and performed a neurite outgrowth assay. RESULTS: Treatment with monastrol enhanced functional and histological recovery in experimental autoimmune neuritis. Motor nerve conduction velocity at day 30 in the treated animals was comparable to pre-neuritis values. Monastrol-treated animals showed partially reinnervated or intact neuromuscular junctions. A significant and dose-dependent accelerated neurite outgrowth was observed after kinesin-5 inhibition as a possible mode of action. CONCLUSION: Pharmacological kinesin-5 inhibition improves the functional outcome in experimental autoimmune neuritis through accelerated motor neurite outgrowth and histological recovery. This approach could be of interest to improve the outcome of autoimmune neuropathy patients.


Assuntos
Células-Tronco Pluripotentes Induzidas , Neurite Autoimune Experimental , Ratos , Animais , Humanos , Neurite Autoimune Experimental/tratamento farmacológico , Neurite Autoimune Experimental/patologia , Cinesinas/uso terapêutico , Ratos Endogâmicos Lew , Células-Tronco Pluripotentes Induzidas/patologia
2.
Hum Mol Genet ; 32(10): 1607-1621, 2023 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-36611004

RESUMO

Stress granules are membrane-less ribonucleoprotein organelles that assemble upon exposure to stress conditions, but rapidly disassemble upon removal of stress. However, chronic stress can lead to persistent stress granules, a feature of distinct age-related neurodegenerative disorders. Among them, Huntington's disease (HD), which is caused by mutant expansion of the polyglutamine (polyQ) repeats of huntingtin protein (HTT), leading to its aggregation. To identify modulators of mutant HTT aggregation, we define its interactome in striatal neurons differentiated from patient-derived induced pluripotent stem cells (HD-iPSCs). We find that HTT interacts with G3BP1, a characteristic component of stress granules. Knockdown of G3BP1 increases mutant HTT protein levels and abolishes the ability of iPSCs as well as their differentiated neural counterparts to suppress mutant HTT aggregation. Moreover, loss of G3BP1 hastens polyQ-expanded aggregation and toxicity in the neurons of HD C. elegans models. Likewise, the assembly of G3BP1 into stress granules upon distinct stress conditions also reduces its interaction with HTT in human cells, promoting mutant HTT aggregation. Notably, enhancing the levels of G3BP1 is sufficient to induce proteasomal degradation of mutant HTT and prevent its aggregation, whereas the formation of stress granules blocks these ameliorative effects. In contrast, a mutant G3BP1 variant that cannot accumulate into granules retains its capacity to prevent mutant HTT aggregation even when the cells assemble stress granules. Thus, our findings indicate a direct role of G3BP1 and stress granule assembly in mutant HTT aggregation that may have implications for HD.


Assuntos
Doença de Huntington , Agregados Proteicos , Animais , Humanos , DNA Helicases/metabolismo , Grânulos de Estresse , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/genética , RNA Helicases/metabolismo , Proteínas com Motivo de Reconhecimento de RNA/genética , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Doença de Huntington/genética , Doença de Huntington/metabolismo , Mutação
3.
J Neural Transm (Vienna) ; 129(2): 141-172, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34689261

RESUMO

Protein homeostasis, or proteostasis, is essential for cell function and viability. Unwanted, damaged, misfolded and aggregated proteins are degraded by the ubiquitin-proteasome system (UPS) and the autophagy-lysosome pathway. Growing evidence indicates that alterations in these major proteolytic mechanisms lead to a demise in proteostasis, contributing to the onset and development of distinct diseases. Indeed, dysregulation of the UPS or autophagy is linked to several neurodegenerative, infectious and inflammatory disorders as well as cancer. Thus, modulation of protein clearance pathways is a promising approach for therapeutics. In this review, we discuss recent findings and open questions on how targeting proteolytic mechanisms could be applied for disease intervention.


Assuntos
Doenças Neurodegenerativas , Proteólise , Autofagia , Humanos , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/terapia , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina/metabolismo
4.
PLoS One ; 15(1): e0227554, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31978073

RESUMO

The olfactory pathway integrates the odor information required to generate correct behavioral responses. To address how changes of serotonin signaling in two contralaterally projecting, serotonin-immunoreactive deutocerebral neurons impacts key odorant attraction in Drosophila melanogaster, we selectively alter serotonin signaling using the serotonin transporter with mutated serotonin binding sites in these neurons and analyzed the consequence on odorant-guided food seeking. The expression of the mutated serotonin transporter selectively changed the odorant attraction in an odorant-specific manner. The shift in attraction was not influenced by more up-stream serotonergic mechanisms mediating behavioral inhibition. The expression of the mutated serotonin transporter in CSD neurons did not influence other behaviors associated with food seeking such as olfactory learning and memory or food consumption. We provide evidence that the change in the attraction by serotonin transporter function might be achieved by increased serotonin signaling and by different serotonin receptors. The 5-HT1B receptor positively regulated the attraction to low and negatively regulated the attraction to high concentrations of acetic acid. In contrast, 5-HT1A and 5-HT2A receptors negatively regulated the attraction in projection neurons to high acetic acid concentrations. These results provide insights into how serotonin signaling in two serotonergic neurons selectively regulates the behavioral response to key odorants during food seeking.


Assuntos
Comportamento Animal , Comportamento Alimentar , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Animais , Drosophila melanogaster/citologia , Drosophila melanogaster/metabolismo , Serotonina/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...