Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2814: 149-161, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38954204

RESUMO

Over the last decade, the use of microfabricated substrates has proven pivotal for studying the effect of substrate topography on cell deformation and migration. Microfabrication techniques allow one to construct a transparent substrate with topographic features with high designability and reproducibility and thus well suited to experiments that microscopically address how spatial and directional bias are brought about in the cytoskeletal machineries and hence cell motility. While much of the progress in this avenue of study has so far been made in adhesive cells of epithelial and mesenchymal nature, whether related phenomena exist in less adhesive fast migrating cells is relatively unknown. In this chapter, we describe a method that makes use of micrometer-scale ridges to study fast-migrating Dictyostelium cells where it was recently shown that membrane evagination associated with macropinocytic cup formation plays a pivotal role in the topography sensing. The method requires only basic photolithography, and thus the step-by-step protocol should be a good entry point for cell biologists looking to incorporate similar microfabrication approaches.


Assuntos
Movimento Celular , Dictyostelium , Microtecnologia , Dictyostelium/citologia , Dictyostelium/fisiologia , Microtecnologia/métodos , Adesão Celular
2.
Adv Sci (Weinh) ; 11(6): e2308030, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38054641

RESUMO

Cells are small, closed spaces filled with various types of macromolecules. Although it is shown that the characteristics of biochemical reactions in vitro are quite different from those in living cells, the role of the co-existence of various macromolecules in cell-size space remains still elusive. Here, using a constructive approach, it is demonstrated that the co-existence of various macromolecules themselves has the ability to tune protein localization for spatiotemporal regulation and a biochemical reaction system in a cell-size space. Both experimental and theoretical analyses reveal that enhancement of interfacial effects by a large surface-area-to-volume ratio facilitates membrane localization of molecules in the cell-size space, and the interfacial effects are alleviated by competitive binding to lipid membranes among multiple proteins even if their membrane affinities are weak. These results indicate that competition for membrane binding among various macromolecules in the cell-size space plays a role in regulating the spatiotemporal molecular organization and biochemical reaction networks. These findings shed light on the importance of surrounding molecules for biochemical reactions using purified elements in small spaces.


Assuntos
Proteínas , Proteínas/química , Transporte Proteico
3.
Small ; 19(38): e2302193, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37224803

RESUMO

In this study, a one-step method is discussed for producing uniform cell-sized microgels using glass capillaries filled with a binary polymer blend of polyethylene glycol (PEG) and gelatin. Upon decreasing temperature, phase separation of the PEG/gelatin blends and gelation of gelatin occur, and then the polymer blend forms linearly aligned, uniformly sized gelatin microgels in the glass capillary. When DNA is added to the polymer solution, gelatin microgels entrapping DNA are spontaneously formed, and the DNA prevents the coalescence of the microdroplets even at temperatures above the melting point. This novel method to form uniform cell-sized microgels may be applicable to other biopolymers. This method is expected to contribute to diverse materials science via biopolymer microgels and biophysics and synthetic biology through cellular models containing biopolymer gels.


Assuntos
Microgéis , Gelatina , Água , Polietilenoglicóis , Polímeros , Biopolímeros , Géis , DNA
4.
PLoS Biol ; 20(9): e3001780, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36067153

RESUMO

Tardigrades are able to tolerate almost complete dehydration by entering a reversible ametabolic state called anhydrobiosis and resume their animation upon rehydration. Dehydrated tardigrades are exceptionally stable and withstand various physical extremes. Although trehalose and late embryogenesis abundant (LEA) proteins have been extensively studied as potent protectants against dehydration in other anhydrobiotic organisms, tardigrades produce high amounts of tardigrade-unique protective proteins. Cytoplasmic-abundant heat-soluble (CAHS) proteins are uniquely invented in the lineage of eutardigrades, a major class of the phylum Tardigrada and are essential for their anhydrobiotic survival. However, the precise mechanisms of their action in this protective role are not fully understood. In the present study, we first postulated the presence of tolerance proteins that form protective condensates via phase separation in a stress-dependent manner and searched for tardigrade proteins that reversibly form condensates upon dehydration-like stress. Through a comprehensive search using a desolvating agent, trifluoroethanol (TFE), we identified 336 proteins, collectively dubbed "TFE-Dependent ReversiblY condensing Proteins (T-DRYPs)." Unexpectedly, we rediscovered CAHS proteins as highly enriched in T-DRYPs, 3 of which were major components of T-DRYPs. We revealed that these CAHS proteins reversibly polymerize into many cytoskeleton-like filaments depending on hyperosmotic stress in cultured cells and undergo reversible gel-transition in vitro. Furthermore, CAHS proteins increased cell stiffness in a hyperosmotic stress-dependent manner and counteract the cell shrinkage caused by osmotic pressure, and even improved the survival against hyperosmotic stress. The conserved putative helical C-terminal region is necessary and sufficient for filament formation by CAHS proteins, and mutations disrupting the secondary structure of this region impaired both the filament formation and the gel transition. On the basis of these results, we propose that CAHS proteins are novel cytoskeleton-like proteins that form filamentous networks and undergo gel-transition in a stress-dependent manner to provide on-demand physical stabilization of cell integrity against deformative forces during dehydration and could contribute to the exceptional physical stability in a dehydrated state.


Assuntos
Tardígrados , Animais , Humanos , Desidratação , Estrutura Secundária de Proteína , Proteínas/metabolismo , Tardígrados/genética
5.
Proc Natl Acad Sci U S A ; 118(50)2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34876521

RESUMO

In fast-moving cells such as amoeba and immune cells, dendritic actin filaments are spatiotemporally regulated to shape large-scale plasma membrane protrusions. Despite their importance in migration, as well as in particle and liquid ingestion, how their dynamics are affected by micrometer-scale features of the contact surface is still poorly understood. Here, through quantitative image analysis of Dictyostelium on microfabricated surfaces, we show that there is a distinct mode of topographical guidance directed by the macropinocytic membrane cup. Unlike other topographical guidance known to date that depends on nanometer-scale curvature sensing protein or stress fibers, the macropinocytic membrane cup is driven by the Ras/PI3K/F-actin signaling patch and its dependency on the micrometer-scale topographical features, namely PI3K/F-actin-independent accumulation of Ras-GTP at the convex curved surface, PI3K-dependent patch propagation along the convex edge, and its actomyosin-dependent constriction at the concave edge. Mathematical model simulations demonstrate that the topographically dependent initiation, in combination with the mutually defining patch patterning and the membrane deformation, gives rise to the topographical guidance. Our results suggest that the macropinocytic cup is a self-enclosing structure that can support liquid ingestion by default; however, in the presence of structured surfaces, it is directed to faithfully trace bent and bifurcating ridges for particle ingestion and cell guidance.


Assuntos
Simulação por Computador , Dictyostelium/fisiologia , Modelos Biológicos , Pinocitose/fisiologia , Membrana Celular/fisiologia , Quimiotaxia , Movimento , Fosfatidilinositol 3-Quinases , Transdução de Sinais
6.
PLoS Comput Biol ; 17(8): e1009237, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34383753

RESUMO

Navigation of fast migrating cells such as amoeba Dictyostelium and immune cells are tightly associated with their morphologies that range from steady polarized forms that support high directionality to those more complex and variable when making frequent turns. Model simulations are essential for quantitative understanding of these features and their origins, however systematic comparisons with real data are underdeveloped. Here, by employing deep-learning-based feature extraction combined with phase-field modeling framework, we show that a low dimensional feature space for 2D migrating cell morphologies obtained from the shape stereotype of keratocytes, Dictyostelium and neutrophils can be fully mapped by an interlinked signaling network of cell-polarization and protrusion dynamics. Our analysis links the data-driven shape analysis to the underlying causalities by identifying key parameters critical for migratory morphologies both normal and aberrant under genetic and pharmacological perturbations. The results underscore the importance of deciphering self-organizing states and their interplay when characterizing morphological phenotypes.


Assuntos
Movimento Celular/fisiologia , Aprendizado Profundo , Modelos Biológicos , Animais , Polaridade Celular/fisiologia , Forma Celular/fisiologia , Extensões da Superfície Celular/fisiologia , Células Cultivadas , Ciclídeos , Biologia Computacional , Simulação por Computador , Dictyostelium/citologia , Dictyostelium/fisiologia , Fibroblastos/citologia , Fibroblastos/fisiologia , Células HL-60 , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...