Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 453: 90-99, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-25978556

RESUMO

In this study, the formation and structure of a single-particle layer of organo-zinc oxide are investigated using surface-pressure-area (π-A) isotherms, out-of-plane X-ray diffraction (XRD) analysis, and atomic force microscopy (AFM). Further, techniques for achieving the solubilization of inorganic fine particles in general solvents have been proposed, and a single-particle layer has been formed using such an inorganic solution as a "spreading solution" for an interfacial film. Surface modification of ZnO is performed using a long-chain carboxylic acid. Accordingly, a regular arrangement of ZnO can be easily achieved in order to overcome the relatively weak van der Walls interactions between inorganic materials. A condensed Langmuir monolayer of these particles is also formed. A multiparticle layered structure is constructed by the Langmuir-Blodgett (LB) technique. Out-of-plane XRD measurement results for a single-particle layer of organo-ZnO clearly show a sharp peak at 42 Å. This peak is attributed to the distance between ZnO layers. The AFM image of this single-particle layer of organo-ZnO shows a particle assembly with a uniform height of 60 nm. These aggregated particles form large two-dimensional crystals. In other words, a regular periodic structure along the c-axis and a condensed single-particle layer had been fabricated using Langmuir and LB techniques.


Assuntos
Ácidos Carboxílicos/química , Nanocompostos/química , Óxido de Zinco/química , Cristalização , Microscopia de Força Atômica , Modelos Moleculares , Nanocompostos/ultraestrutura , Propriedades de Superfície , Difração de Raios X
2.
Langmuir ; 31(10): 3254-61, 2015 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-25727135

RESUMO

A technique to solubilize fine magnetic inorganic particles in general organic solvents is proposed via surfaces modification by long-chain carboxylic acids. This organic modification should overcome the relatively weak van der Waals interactions between the nanoparticles, allowing the formation of ordered arrangements of the modified Fe3O4 and CoFe2O4 materials. Using nanodispersions of these organo-modified magnetic nanoparticles as "spreading solutions", Langmuir monolayers of these particles were formed. Multiparticle layered structures were constructed by the Langmuir-Blodgett (LB) technique. The fabrication of single- and multiparticle layers of organo-modified magnetic nanoparticles was investigated using surface pressure-area (π-A) isotherms, out-of-plane X-ray diffraction (XRD), in-plane XRD, and atomic force microscopy (AFM). The out-of-plane XRD profile of a single-particle layer of organo-modified Fe3O4 clearly showed a sharp peak which was attributed to the distance between Fe3O4 layers along the c-axis. The AFM image of single-particle layer of organo-modified CoFe2O4 revealed integrated particle organization with a uniform height; these aggregated particles formed large two-dimensional crystals. For both nanoparticle species, regular periodic structures along the c-axis and high-density single-particle layers were produced via the Langmuir and LB techniques.

3.
Langmuir ; 31(9): 2895-904, 2015 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-25692757

RESUMO

The role of organo-modifying molecular chains in the formation of molecular films of organo-modified nanodiamond is discussed herein based on interfacial chemical particle integration of organo-modified nanodiamond having a particle size of 5 nm. The surface of nanodiamond is known to be covered with a nanolayer of adsorbed water. This water nanolayer was exploited for organo-modification of nanodiamond with long-chain fatty acids via adsorption, leading to nanodispersion of nanodiamond in general organic solvents as a mimic of solvency. The organo-modified nanodiamond dispersed "solution" was used as a spreading solution for depositing a mono-"particle" layer on the water surface, and a Langmuir particle layer was integrated at the air/water interface. Multi-"particle" layers were then formed via the Langmuir-Blodgett technique and were subjected to fine structural analysis. The effect of organo-modification enabled integration and multilayer formation of inorganic nanoparticles due to enhancement of the van der Waals interactions between the chains. That is to say, the "encounter" between the organo-modifying chain and the inorganic particles led to solubilization of the inorganic particles and enhanced interactions between the particles, which can be regarded as imparting new function to the organic molecules. The morphology of the single-particle layer was maintained after removal of the organic region of the composite via the baking process, whereas the regularity of the layered period was disordered. Thus, the organic chains are essential as modifiers for maintenance of the layered structure.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...