Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biosci Biotechnol Biochem ; 85(3): 587-599, 2021 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-33624780

RESUMO

In Saccharomyces cerevisiae, Avt4 exports neutral and basic amino acids from vacuoles. Previous studies have suggested that the GATA transcription factors, Gln3 and Gat1, which are key regulators that adapt cells in response to changes in amino acid status, are involved in the AVT4 transcription. Here, we show that mutations in the putative GATA-binding sites of the AVT4 promoter reduced AVT4 expression. Consistently, a chromatin immunoprecipitation (ChIP) assay revealed that Gat1-Myc13 binds to the AVT4 promoter. Previous microarray results were confirmed that gln3∆gat1∆ cells showed a decrease in expression of AVT1 and AVT7, which also encode vacuolar amino acid transporters. Additionally, ChIP analysis revealed that the AVT6 encoding vacuolar acidic amino acid exporter represents a new direct target of the GATA transcription factor. The broad effect of the GATA transcription factors on the expression of AVT transporters suggests that vacuolar amino acid transport is integrated into cellular amino acid homeostasis.


Assuntos
Sistemas de Transporte de Aminoácidos Básicos/metabolismo , Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Fatores de Transcrição GATA/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Vacúolos/metabolismo , Sistemas de Transporte de Aminoácidos Básicos/genética , Sistemas de Transporte de Aminoácidos Neutros/genética , Sítios de Ligação , Homeostase , Regiões Promotoras Genéticas , Proteínas de Saccharomyces cerevisiae/genética
2.
Plant Biotechnol J ; 14(2): 783-90, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26132723

RESUMO

We investigated graft transmission of high-temperature tolerance in tomato scions to nontransgenic scions from transgenic rootstocks, where the fatty acid desaturase gene (LeFAD7) was RNA-silenced. Tomato was transformed with a plasmid carrying an inverted repeat of LeFAD7 by Agrobacterium. Several transgenic lines showed the lower amounts of LeFAD7 RNA and unsaturated fatty acids, while nontransgenic control did not, and siRNA was detected in the transgenic lines, but not in control. These lines grew under conditions of high temperature, while nontransgenic control did not. Further, the nontransgenic plants were grafted onto the silenced transgenic plants. The scions showed less of the target gene RNA, and siRNA was detected. Under high-temperature conditions, these grafted plants grew, while control grafted plants did not. Thus, it was shown that high-temperature tolerance was conferred in the nontransgenic scions after grafting onto the silenced rootstocks.


Assuntos
Ácidos Graxos Dessaturases/genética , Genes de Plantas , Temperatura Alta , Interferência de RNA , Solanum lycopersicum/enzimologia , Solanum lycopersicum/genética , Técnicas de Cultura de Tecidos/métodos , Adaptação Fisiológica/genética , Sequência de Bases , Fases de Leitura Aberta/genética , Filogenia , Plantas Geneticamente Modificadas , Plasmídeos/metabolismo , Transformação Genética
3.
Biosci Biotechnol Biochem ; 73(9): 2090-5, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19734666

RESUMO

Cu(2+)-treatment is a useful technique in selectively permeabilizing the fungal plasma membrane. We describe herein a practical application with Schizosaccharomyces pombe. Incubation of cells with 0.5 mM CuCl(2) at 30 degrees C for 20 min induced efficient leakage of cytosolic constituents. The kinetic characteristics of the calcium and amino acid flux from Cu(2+)-treated S. pombe cells suggested that the Cu(2+) treatment permeabilized the plasma membrane without loss of vacuolar function. As a further application of the method, the amino acid contents of Cu(2+)-treated and untreated cells were also determined. The amino acid pool of Cu(2+)-treated wild-type cells was enriched in basic amino acids but not in acidic amino acids, as is characteristic of the vacuolar amino acid pool of fungi, including Saccharomyces cerevisiae and Neurosporra crassa. The amino acid pool of the S. pombe V-ATPase mutant vma1Delta was also successfully determined. We conclude that the vacuolar amino acid pool of S. pombe can be measured using Cu(2+)-treated cells. The method is simple, inexpensive, and rapid relative to the isolation of vacuolar vesicles, making it useful in estimating vacuolar pools and transport across the vacuolar membrane.


Assuntos
Permeabilidade da Membrana Celular/efeitos dos fármacos , Cobre/farmacologia , Schizosaccharomyces/citologia , Aminoácidos/metabolismo , Cálcio/metabolismo , Cinética , Schizosaccharomyces/enzimologia , Schizosaccharomyces/metabolismo , ATPases Vacuolares Próton-Translocadoras/metabolismo
4.
J Gen Appl Microbiol ; 55(6): 409-17, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20118605

RESUMO

Here we examined the significance of Avt6, a vacuolar exporter of glutamate and aspartate suggested by the in vitro membrane vesicle experiment, in vacuolar compartmentalization of amino acids in Saccharomyces cerevisiae cells. Fluorescent microscopic observation of GFP-fused Avt6 revealed it to be exclusively localized to the vacuolar membrane, with the amount of Myc-tagged Avt6 significantly increased under nitrogen starvation. Glutamate uptake by cells was enhanced by deletion of the AVT6 gene, indicating indirect involvement of Avt6 in cellular glutamate accumulation. Differences in acidic amino acid content of both total and vacuolar fractions were insignificant between the parent and avt6Delta cells when cultured in nutrient-rich conditions. However, in nitrogen-starved conditions, the amount of glutamate and aspartate in the vacuolar fraction was notably increased in the avt6Delta cells. Avt6 is thus involved in vacuolar amino acid compartmentalization in S. cerevisiae cells, especially under conditions of nitrogen starvation.


Assuntos
Sistemas de Transporte de Aminoácidos/metabolismo , Aminoácidos Acídicos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Vacúolos/metabolismo , Ácido Aspártico/metabolismo , Transporte Biológico , Meios de Cultura , Regulação Fúngica da Expressão Gênica , Ácido Glutâmico/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Membranas Intracelulares/metabolismo , Nitrogênio/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...