Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 270
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 18(26): 17111-17118, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38952326

RESUMO

Establishing reliable electrical contacts to atomically thin materials is a prerequisite for both fundamental studies and applications yet remains a challenge. In particular, the development of contact techniques for air-sensitive monolayers has lagged behind, despite their unique properties and significant potential for applications. Here, we present a robust method to create contacts to device layers encapsulated within hexagonal boron nitride (hBN). This method uses plasma etching and metal deposition to create 'vias' in the hBN with graphene forming an atomically thin etch-stop. The resulting partially fluorinated graphene (PFG) protects the underlying device layer from air-induced degradation and damage during metal deposition. PFG is resistive in-plane but maintains high out-of-plane conductivity. The work function of the PFG/metal contact is tunable through the degree of fluorination, offering opportunities for contact engineering. Using the in situ via technique, we achieve ambipolar contact to air-sensitive monolayer 2H-molybdenum ditelluride (MoTe2) with more than 1 order of magnitude improvement in on-current density compared to previous literature. The complete encapsulation provides high reproducibility and long-term stability. The technique can be extended to other air-sensitive materials as well as air-stable materials, offering highly competitive device performance.

2.
Sci Adv ; 10(18): eadi3653, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38691599

RESUMO

Manipulating the nanostructure of materials is critical for numerous applications in electronics, magnetics, and photonics. However, conventional methods such as lithography and laser writing require cleanroom facilities or leave residue. We describe an approach to creating atomically sharp line defects in hexagonal boron nitride (hBN) at room temperature by direct optical phonon excitation with a mid-infrared pulsed laser from free space. We term this phenomenon "unzipping" to describe the rapid formation and growth of a crack tens of nanometers wide from a point within the laser-driven region. Formation of these features is attributed to the large atomic displacement and high local bond strain produced by strongly driving the crystal at a natural resonance. This process occurs only via coherent phonon excitation and is highly sensitive to the relative orientation of the crystal axes and the laser polarization. Its cleanliness, directionality, and sharpness enable applications such as polariton cavities, phonon-wave coupling, and in situ flake cleaving.

3.
Nano Lett ; 24(20): 6031-6037, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38717626

RESUMO

Manipulating the polarization of light at the nanoscale is key to the development of next-generation optoelectronic devices. This is typically done via waveplates using optically anisotropic crystals, with thicknesses on the order of the wavelength. Here, using a novel ultrafast electron-beam-based technique sensitive to transient near fields at THz frequencies, we observe a giant anisotropy in the linear optical response in the semimetal WTe2 and demonstrate that one can tune the THz polarization using a 50 nm thick film, acting as a broadband wave plate with thickness 3 orders of magnitude smaller than the wavelength. The observed circular deflections of the electron beam are consistent with simulations tracking the trajectory of the electron beam in the near field of the THz pulse. This finding offers a promising approach to enable atomically thin THz polarization control using anisotropic semimetals and defines new approaches for characterizing THz near-field optical response at far-subwavelength length scales.

4.
Nature ; 630(8017): 636-642, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38811732

RESUMO

Chemical vapour deposition (CVD) synthesis of graphene on copper has been broadly adopted since the first demonstration of this process1. However, widespread use of CVD-grown graphene for basic science and applications has been hindered by challenges with reproducibility2 and quality3. Here we identify trace oxygen as a key factor determining the growth trajectory and quality for graphene grown by low-pressure CVD. Oxygen-free chemical vapour deposition (OF-CVD) synthesis is fast and highly reproducible, with kinetics that can be described by a compact model, whereas adding trace oxygen leads to suppressed nucleation and slower/incomplete growth. Oxygen affects graphene quality as assessed by surface contamination, emergence of the Raman D peak and decrease in electrical conductivity. Epitaxial graphene grown in oxygen-free conditions is contamination-free and shows no detectable D peak. After dry transfer and boron nitride encapsulation, it shows room-temperature electrical-transport behaviour close to that of exfoliated graphene. A graphite-gated device shows well-developed integer and fractional quantum Hall effects. By highlighting the importance of eliminating trace oxygen, this work provides guidance for future CVD system design and operation. The increased reproducibility and quality afforded by OF-CVD synthesis will broadly influence basic research and applications of graphene.

5.
Nano Lett ; 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38597670

RESUMO

We report experimental and theoretical studies of MoTe2-MoSe2 heterobilayers with rigid moiré superlattices controlled by the twist angle. Using an effective continuum model that combines resonant interlayer electron tunneling with stacking-dependent moiré potentials, we identify the nature of moiré excitons and the dependence of their energies, oscillator strengths, and Landé g-factors on the twist angle. Within the same framework, we interpret distinct signatures of bound complexes among electrons and moiré excitons in nearly collinear heterostacks. Our work provides a fundamental understanding of hybrid moiré excitons and trions in MoTe2-MoSe2 heterobilayers and establishes the material system as a prime candidate for optical studies of correlated phenomena in moiré lattices.

6.
ACS Nano ; 18(9): 6887-6895, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38386278

RESUMO

Atomic defects in two-dimensional (2D) materials impact electronic and optoelectronic properties, such as doping and single photon emission. An understanding of defect-property relationships is essential for optimizing material performance. However, progress in understanding these critical relationships is hindered by a lack of straightforward approaches for accurate, precise, and reliable defect quantification on the nanoscale, especially for insulating materials. Here, we demonstrate that lateral force microscopy (LFM), a mechanical technique, can observe atomic defects in semiconducting and insulating 2D materials under ambient conditions. We first improve the sensitivity of LFM through consideration of cantilever mechanics. With the improved sensitivity, we use LFM to locate atomic-scale point defects on the surface of bulk MoSe2. By directly comparing LFM and conductive atomic force microscopy (CAFM) measurements on bulk MoSe2, we demonstrate that point defects observed with LFM are atomic defects in the crystal. As a mechanical technique, LFM does not require a conductive pathway, which allows defect characterization on insulating materials, such as hexagonal boron nitride (hBN). We demonstrate the ability to observe intrinsic defects in hBN and defects introduced by annealing. Our demonstration of LFM as a mechanical defect characterization technique applicable to both conductive and insulating 2D materials will enable routine defect-property determination and accelerate materials research.

8.
Nat Commun ; 15(1): 1543, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38378789

RESUMO

Localized states in two-dimensional (2D) transition metal dichalcogenides (TMDCs) have been the subject of intense study, driven by potential applications in quantum information science. Despite the rapidly growing knowledge surrounding these emitters, their microscopic nature is still not fully understood, limiting their production and application. Motivated by this challenge, and by recent theoretical and experimental evidence showing that nanowrinkles generate strain-localized room-temperature emitters, we demonstrate a method to intentionally induce wrinkles with collections of stressors, showing that long-range wrinkle direction and position are controllable with patterned array design. Nano-photoluminescence (nano-PL) imaging combined with detailed strain modeling based on measured wrinkle topography establishes a correlation between wrinkle properties, particularly shear strain, and localized exciton emission. Beyond the array-induced wrinkles, nano-PL spatial maps further reveal that the strain environment around individual stressors is heterogeneous due to the presence of fine wrinkles that are less deterministic. At cryogenic temperatures, antibunched emission is observed, confirming that the nanocone-induced strain is sufficiently large for the formation of quantum emitters. At 300 K, detailed nanoscale hyperspectral images uncover a wide range of low-energy emission peaks originating from the fine wrinkles, and show that the states can be tightly confined to regions <10 nm, even in ambient conditions. These results establish a promising potential route towards realizing room temperature quantum emission in 2D TMDC systems.

9.
Phys Rev Lett ; 132(5): 056303, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38364168

RESUMO

Employing flux-grown single crystal WSe_{2}, we report charge-carrier scattering behaviors measured in h-BN encapsulated monolayer field effect transistors. We observe a nonmonotonic change of transport mobility as a function of hole density in the degenerately doped sample, which can be explained by energy dependent scattering amplitude of strong defects calculated using the T-matrix approximation. Utilizing long mean-free path (>500 nm), we also demonstrate the high quality of our electronic devices by showing quantized conductance steps from an electrostatically defined quantum point contact, showing the potential for creating ultrahigh quality quantum optoelectronic devices based on atomically thin semiconductors.

10.
Sci Adv ; 10(5): eadj4060, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38295176

RESUMO

Since the seminal work on MoS2, photoexcitation in atomically thin transition metal dichalcogenides (TMDCs) has been assumed to result in excitons, with binding energies order of magnitude larger than thermal energy at room temperature. Here, we reexamine this foundational assumption and show that photoexcitation of TMDC monolayers can result in a substantial population of free charges. Performing ultrafast terahertz spectroscopy on large-area, single-crystal TMDC monolayers, we find that up to ~10% of excitons spontaneously dissociate into charge carriers with lifetimes exceeding 0.2 ns. Scanning tunneling microscopy reveals that photocarrier generation is intimately related to mid-gap defects, likely via trap-mediated Auger scattering. Only in state-of-the-art quality monolayers, with mid-gap trap densities as low as 109 cm-2, does intrinsic exciton physics start to dominate the terahertz response. Our findings reveal the necessity of knowing the defect density in understanding photophysics of TMDCs.

11.
Adv Mater ; 36(14): e2310498, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38169481

RESUMO

Monolayer transition metal dichalcogenides (TMDs) have drawn significant attention for their potential in optoelectronic applications due to their direct band gap and exceptional quantum yield. However, TMD-based light-emitting devices have shown low external quantum efficiencies as imbalanced free carrier injection often leads to the formation of non-radiative charged excitons, limiting practical applications. Here, electrically confined electroluminescence (EL) of neutral excitons in tungsten diselenide (WSe2) light-emitting transistors (LETs) based on the van der Waals heterostructure is demonstrated. The WSe2 channel is locally doped to simultaneously inject electrons and holes to the 1D region by a local graphene gate. At balanced concentrations of injected electrons and holes, the WSe2 LETs exhibit strong EL with a high external quantum efficiency (EQE) of ≈8.2 % at room temperature. These experimental and theoretical results consistently show that the enhanced EQE could be attributed to dominant exciton emission confined at the 1D region while expelling charged excitons from the active area by precise control of external electric fields. This work shows a promising approach to enhancing the EQE of 2D light-emitting transistors and modulating the recombination of exciton complexes for excitonic devices.

12.
ACS Nano ; 18(5): 4118-4130, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38261768

RESUMO

Waveguides play a key role in the implementation of on-chip optical elements and, therefore, lie at the heart of integrated photonics. To add the functionalities of layered materials to existing technologies, dedicated fabrication protocols are required. Here, we build on laser writing to pattern grating structures into bulk noncentrosymmetric transition metal dichalcogenides with grooves as sharp as 250 nm. Using thin flakes of 3R-MoS2 that act as waveguides for near-infrared light, we demonstrate the functionality of the grating couplers with two complementary experiments: first, nano-optical imaging is used to visualize transverse electric and magnetic modes, whose directional outcoupling is captured by finite element simulations. Second, waveguide second-harmonic generation is demonstrated by grating-coupling femtosecond pulses into the slabs in which the radiation partially undergoes frequency doubling throughout the propagation. Our work provides a straightforward strategy for laser patterning of van der Waals crystals, demonstrates the feasibility of compact frequency converters, and examines the tuning knobs that enable optimized coupling into layered waveguides.

13.
Nat Commun ; 14(1): 8261, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38086835

RESUMO

Exciton polaritons are quasiparticles of photons coupled strongly to bound electron-hole pairs, manifesting as an anti-crossing light dispersion near an exciton resonance. Highly anisotropic semiconductors with opposite-signed permittivities along different crystal axes are predicted to host exotic modes inside the anti-crossing called hyperbolic exciton polaritons (HEPs), which confine light subdiffractionally with enhanced density of states. Here, we show observational evidence of steady-state HEPs in the van der Waals magnet chromium sulfide bromide (CrSBr) using a cryogenic near-infrared near-field microscope. At low temperatures, in the magnetically-ordered state, anisotropic exciton resonances sharpen, driving the permittivity negative along one crystal axis and enabling HEP propagation. We characterize HEP momentum and losses in CrSBr, also demonstrating coupling to excitonic sidebands and enhancement by magnetic order: which boosts exciton spectral weight via wavefunction delocalization. Our findings open new pathways to nanoscale manipulation of excitons and light, including routes to magnetic, nonlocal, and quantum polaritonics.

14.
Nano Lett ; 23(24): 11621-11629, 2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38071655

RESUMO

Two-dimensional (2D) transition metal dichalcogenides (TMDC) and their moiré interfaces have been demonstrated for correlated electron states, including Mott insulators and electron/hole crystals commensurate with moiré superlattices. Here we present spectroscopic evidence for ordered bosons─interlayer exciton crystals in a WSe2/MoSe2/WSe2 trilayer, where the enhanced Coulomb interactions over those in heterobilayers have been predicted to result in exciton ordering. Ordered interlayer excitons in the trilayer are characterized by negligible mobility and by sharper PL peaks persisting to an exciton density of nex ∼ 1012 cm-2, which is an order of magnitude higher than the corresponding limit in the heterobilayer. We present evidence for the predicted quadrupolar exciton crystal and its transitions to dipolar excitons either with increasing nex or by an applied electric field. These ordered interlayer excitons may serve as models for the exploration of quantum phase transitions and quantum coherent phenomena.

15.
ACS Nano ; 17(24): 24743-24752, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38095969

RESUMO

Defects significantly affect the electronic, chemical, mechanical, and optical properties of two-dimensional (2D) materials. Thus, it is critical to develop a method for convenient and reliable defect quantification. Scanning transmission electron microscopy (STEM) and scanning tunneling microscopy (STM) possess the required atomic resolution but have practical disadvantages. Here, we benchmark conductive atomic force microscopy (CAFM) by a direct comparison with STM in the characterization of transition metal dichalcogenides (TMDs). The results conclusively demonstrate that CAFM and STM image identical defects, giving results that are equivalent both qualitatively (defect appearance) and quantitatively (defect density). Further, we confirm that CAFM can achieve single-atom resolution, similar to that of STM, on both bulk and monolayer samples. The validation of CAFM as a facile and accurate tool for defect quantification provides a routine and reliable measurement that can complement other standard characterization techniques.

16.
Phys Rev Lett ; 131(18): 183801, 2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-37977645

RESUMO

Quantum technologies, if scaled into a high-dimensional Hilbert space, can dramatically enhance connection capabilities with supporting higher bit rates and ultrasecure information transfer. Twisted single photons, carrying orbital angular momentum (OAM) as an unbounded dimension, could address the growing demand for high-dimensional quantum information encoding and transmission. By hybrid integration of two-dimensional semiconductor WSe_{2} with a spin-orbit-coupled microring resonator, we demonstrate an integrated tunable twisted single photon source with the ability to precisely define and switch between highly pure spin-OAM states. Our results feature a single photon purity of g^{(2)}(0)∼0.13 with a cavity-enhanced quantum yield of 76% and a high OAM mode purity up to 96.9%. Moreover, the demonstrated quantum-chiral control can also enable new quantum functionality such as single photon routing for efficient quantum information processing on chip.

17.
Nat Commun ; 14(1): 7685, 2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-38001087

RESUMO

Polar crystals can be driven into collective oscillations by optical fields tuned to precise resonance frequencies. As the amplitude of the excited phonon modes increases, novel processes scaling non-linearly with the applied fields begin to contribute to the dynamics of the atomic system. Here we show two such optical nonlinearities that are induced and enhanced by the strong phonon resonance in the van der Waals crystal hexagonal boron nitride (hBN). We predict and observe large sub-picosecond duration signals due to four-wave mixing (FWM) during resonant excitation. The resulting FWM signal allows for time-resolved observation of the crystal motion. In addition, we observe enhancements of third-harmonic generation with resonant pumping at the hBN transverse optical phonon. Phonon-induced nonlinear enhancements are also predicted to yield large increases in high-harmonic efficiencies beyond the third.

18.
Nat Commun ; 14(1): 6200, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37794007

RESUMO

Ferroelectricity, a spontaneous and reversible electric polarization, is found in certain classes of van der Waals (vdW) materials. The discovery of ferroelectricity in twisted vdW layers provides new opportunities to engineer spatially dependent electric and optical properties associated with the configuration of moiré superlattice domains and the network of domain walls. Here, we employ near-field infrared nano-imaging and nano-photocurrent measurements to study ferroelectricity in minimally twisted WSe2. The ferroelectric domains are visualized through the imaging of the plasmonic response in a graphene monolayer adjacent to the moiré WSe2 bilayers. Specifically, we find that the ferroelectric polarization in moiré domains is imprinted on the plasmonic response of the graphene. Complementary nano-photocurrent measurements demonstrate that the optoelectronic properties of graphene are also modulated by the proximal ferroelectric domains. Our approach represents an alternative strategy for studying moiré ferroelectricity at native length scales and opens promising prospects for (opto)electronic devices.

19.
Nat Mater ; 22(12): 1478-1484, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37857887

RESUMO

Strongly bound excitons determine light-matter interactions in van der Waals heterostructures of two-dimensional semiconductors. Unlike fundamental particles, quasiparticles in condensed matter, such as excitons, can be tailored to alter their interactions and realize emergent quantum phases. Here, using a WS2/WSe2/WS2 heterotrilayer, we create a quantum superposition of oppositely oriented dipolar excitons-a quadrupolar exciton-wherein an electron is layer-hybridized in WS2 layers while the hole localizes in WSe2. In contrast to dipolar excitons, symmetric quadrupolar excitons only redshift in an out-of-plane electric field. At higher densities and a finite electric field, the nonlinear Stark shift of quadrupolar excitons becomes linear, signalling a transition to dipolar excitons resulting from exciton-exciton interactions, while at a vanishing electric field, the reduced exchange interaction suggests antiferroelectric correlations between dipolar excitons. Our results present van der Waals heterotrilayers as a field-tunable platform to engineer light-matter interactions and explore quantum phase transitions between spontaneously ordered many-exciton phases.

20.
Nano Lett ; 23(21): 9936-9942, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37852205

RESUMO

Hexagonal boron nitride (hBN) hosts phonon polaritons (PhP), hybrid light-matter states that facilitate electromagnetic field confinement and exhibit long-range ballistic transport. Extracting the spatiotemporal dynamics of PhPs usually requires "tour de force" experimental methods such as ultrafast near-field infrared microscopy. Here, we leverage the remarkable environmental sensitivity of excitons in two-dimensional transition metal dichalcogenides to image PhP propagation in adjacent hBN slabs. Using ultrafast optical microscopy on monolayer WSe2/hBN heterostructures, we image propagating PhPs from 3.5 K to room temperature with subpicosecond and few-nanometer precision. Excitons in WSe2 act as transducers between visible light pulses and infrared PhPs, enabling visible-light imaging of PhP transport with far-field microscopy. We also report evidence of excitons in WSe2 copropagating with hBN PhPs over several micrometers. Our results provide new avenues for imaging polar excitations over a large frequency range with extreme spatiotemporal precision and new mechanisms to realize ballistic exciton transport at room temperature.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...