Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 18(24): 16566-74, 2016 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-27253605

RESUMO

The bipolar effect in relatively narrow band-gap thermoelectric (TE) compounds is a negative process deteriorating the TE properties particularly at higher temperatures. In this work, we investigate the TE performance of the compound CaMg2Bi2 using the first-principles calculation and semi-classical Boltzmann transport theory in combination with our experimental data. It is revealed that this compound exhibits a remarkable bipolar effect and temperature-dependent carrier concentration. The bipolar effect imposes remarkable influence on all the electron-transport related TE parameters. An effective carrier concentration neff as a function of temperature is proposed to account for the bipolar effect induced carrier excitations. The as-evaluated TE parameters then show good consistency with measured results. This work may shed light on our understanding of the bipolar effect in TE compounds.

2.
Sci Rep ; 6: 22778, 2016 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-26947395

RESUMO

The thermoelectric performance of materials relies substantially on the band structures that determine the electronic and phononic transports, while the transport behaviors compete and counter-act for the power factor PF and figure-of-merit ZT. These issues make a full-scale computation of the whole set of thermoelectric parameters particularly attractive, while a calculation scheme of the electronic and phononic contributions to thermal conductivity remains yet challenging. In this work, we present a full-scale computation scheme based on the first-principles calculations by choosing a set of doped half-Heusler compounds as examples for illustration. The electronic structure is computed using the WIEN2k code and the carrier relaxation times for electrons and holes are calculated using the Bardeen and Shockley's deformation potential (DP) theory. The finite-temperature electronic transport is evaluated within the framework of Boltzmann transport theory. In sequence, the density functional perturbation combined with the quasi-harmonic approximation and the Klemens' equation is implemented for calculating the lattice thermal conductivity of carrier-doped thermoelectric materials such as Ti-doped NbFeSb compounds without losing a generality. The calculated results show good agreement with experimental data. The present methodology represents an effective and powerful approach to calculate the whole set of thermoelectric properties for thermoelectric materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...