Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Pharmacol ; 15: 1369403, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38831885

RESUMO

Accurately predicting Drug-Drug Interaction (DDI) is a critical and challenging aspect of the drug discovery process, particularly in preventing adverse reactions in patients undergoing combination therapy. However, current DDI prediction methods often overlook the interaction information between chemical substructures of drugs, focusing solely on the interaction information between drugs and failing to capture sufficient chemical substructure details. To address this limitation, we introduce a novel DDI prediction method: Multi-layer Adaptive Soft Mask Graph Neural Network (MASMDDI). Specifically, we first design a multi-layer adaptive soft mask graph neural network to extract substructures from molecular graphs. Second, we employ an attention mechanism to mine substructure feature information and update latent features. In this process, to optimize the final feature representation, we decompose drug-drug interactions into pairwise interaction correlations between the core substructures of each drug. Third, we use these features to predict the interaction probabilities of DDI tuples and evaluate the model using real-world datasets. Experimental results demonstrate that the proposed model outperforms state-of-the-art methods in DDI prediction. Furthermore, MASMDDI exhibits excellent performance in predicting DDIs of unknown drugs in two tasks that are more aligned with real-world scenarios. In particular, in the transductive scenario using the DrugBank dataset, the ACC and AUROC and AUPRC scores of MASMDDI are 0.9596, 0.9903, and 0.9894, which are 2% higher than the best performing baseline.

2.
Heliyon ; 10(9): e30045, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38694097

RESUMO

Health insurance fraud is becoming more common and impacting the fairness and sustainability of the health insurance system. Traditional health insurance fraud detection primarily relies on recognizing established data patterns. However, with the ever-expanding and complex nature of health insurance data, it is difficult for these traditional methods to effectively capture evolving fraudulent activity and tactics and keep pace with the constant improvements and innovations of fraudsters. As a result, there is an urgent need for more accurate and flexible analytics to detect potential fraud. To address this, the Multi-channel Heterogeneous Graph Structured Learning-based health insurance fraud detection method (MHGSL) was proposed. MHGSL constructs a graph of health insurance data from various entities, such as patients, departments, and medicines, and employs graph structure learning to extract topological structure, features, and semantic information to construct multiple graphs that reflect the diversity and complexity of the data. We utilize deep learning methods such as heterogeneous graph neural networks and graph convolutional neural networks to combine multi-channel information transfer and feature fusion to detect anomalies in health insurance data. The results of extensive experiments on real health insurance data demonstrate that MHGSL achieves a high level of accuracy in detecting potential fraud, which is better than existing methods, and is able to quickly and accurately identify patients with fraudulent behaviors to avoid loss of health insurance funds. Experiments have shown that multi-channel heterogeneous graph structure learning in MHGSL can be very helpful for health insurance fraud detection. It provides a promising solution for detecting health insurance fraud and improving the fairness and sustainability of the health insurance system. Subsequent research on fraud detection methods can consider semantic information between patients and different types of entities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...