Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 735
Filtrar
1.
Chin J Integr Med ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38958885

RESUMO

Coronavirus disease 2019 (COVID-19) is an acute infectious respiratory disease that has been prevalent since December 2019. Chinese medicine (CM) has demonstrated its unique advantages in the fight against COVID-19 in the areas of disease prevention, improvement of clinical symptoms, and control of disease progression. This review summarized the relevant material components of CM in the treatment of COVID-19 by searching the relevant literature and reports on CM in the treatment of COVID-19 and combining with the physiological and pathological characteristics of the novel coronavirus. On the basis of sorting out experimental methods in vivo and in vitro, the mechanism of herb action was further clarified in terms of inhibiting virus invasion and replication and improving related complications. The aim of the article is to explore the strengths and characteristics of CM in the treatment of COVID-19, and to provide a basis for the research and scientific, standardized treatment of COVID-19 with CM.

2.
Chin Med ; 19(1): 83, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38862981

RESUMO

BACKGROUND: Respiratory syncytial virus (RSV)-induced lung inflammation is one of the main causes of hospitalization and easily causes disruption of intestinal homeostasis in infants, thereby resulting in a negative impact on their development. However, the current clinical drugs are not satisfactory. Zedoary turmeric oil injection (ZTOI), a patented traditional Chinese medicine (TCM), has been used for clinical management of inflammatory diseases. However, its in vivo efficacy against RSV-induced lung inflammation and the underlying mechanism remain unclear. PURPOSE: The present study was designed to confirm the in vivo efficacy of ZTOI against lung inflammation and intestinal disorders in RSV-infected young mice and to explore the potential mechanism. STUDY DESIGN AND METHODS: Lung inflammation was induced by RSV, and cytokine antibody arrays were used to clarify the effectiveness of ZTOI in RSV pneumonia. Subsequently, key therapeutic targets of ZTOI against RSV pneumonia were identified through multi-factor detection and further confirmed. The potential therapeutic material basis of ZTOI in target tissues was determined by non-target mass spectrometry. After confirming that the pharmacological substances of ZTOI can reach the intestine, we used 16S rRNA-sequencing technology to study the effect of ZTOI on the intestinal bacteria. RESULTS: In the RSV-induced mouse lung inflammation model, ZTOI significantly reduced the levels of serum myeloperoxidase, serum amyloid A, C-reactive protein, and thymic stromal lymphoprotein; inhibited the mRNA expression of IL-10 and IL-6; and decreased pathological changes in the lungs. Immunofluorescence and qPCR experiments showed that ZTOI reduced RSV load in the lungs. According to cytokine antibody arrays, platelet factor 4 (PF4), a weak chemotactic factor mainly synthesized by megakaryocytes, showed a concentration-dependent change in lung tissues affected by ZTOI, which could be the key target for ZTOI to exert anti-inflammatory effects. Additionally, sesquiterpenes were enriched in the lungs and intestines, thereby exerting anti-inflammatory and regulatory effects on gut microbiota. CONCLUSION: ZTOI can protect from lung inflammation via PF4 and regulate gut microbiota disorder in RSV-infected young mice by sesquiterpenes, which provides reference for its clinical application in RSV-induced lung diseases.

3.
Adv Mater ; : e2407194, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38896032

RESUMO

Perfluorooctanoic acid (PFOA) is a highly recalcitrant organic pollutant, and its bioaccumulation severely endangers human health. While various methods are developed for PFOA removal, the targeted design of adsorbents with high efficiency and reusability remains largely unexplored. Here the rational design and synthesis of two novel zirconium-based metal‒organic frameworks (MOFs) bearing free ortho-hydroxy sites, namely noninterpenetrated PCN-1001 and twofold interpenetrated PCN-1002, are presented. Single crystal analysis of the pure ligand reveals that intramolecular hydrogen bonding plays a pivotal role in directing the formation of MOFs with free hydroxy groups. Furthermore, the transformation from PCN-1001 to PCN-1002 is realized. Compared to PCN-1001, PCN-1002 displays higher chemical stability due to interpenetration, thereby demonstrating an exceptional PFOA adsorption capacity of up to 632 mg g-1 (1.53 mmol g-1), which is comparable to the reported record values. Moreover, PCN-1002 shows rapid kinetics, high selectivity, and long-life cycles in PFOA removal tests. Solid-state nuclear magnetic resonance results and density functional theory calculations reveal that multiple hydrogen bonds between the free ortho-hydroxy sites and PFOA, along with Lewis acid-base interaction, work collaboratively to enhance PFOA adsorption.

4.
Adv Sci (Weinh) ; : e2309540, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38837615

RESUMO

Ethylene dimerization is an efficient industrial chemical process to produce 1-butene, with demanding selectivity and activity requirements on new catalytic systems. Herein, a series of monodentate phosphinoamine-nickel complexes immobilized on UiO-66 are described for ethylene dimerization. These catalysts display extensive molecular tunability of the ligand similar to organometallic catalysis, while maintaining the high stability attributed to the metal-organic framework (MOF) scaffold. The highly flexible postsynthetic modification method enables this study to prepare MOFs functionalized with five different substituted phosphines and 3 N-containing ligands and identify the optimal catalyst UiO-66-L5-NiCl2 with isopropyl substituted nickel mono-phosphinoamine complex. This catalyst shows a remarkable activity and selectivity with a TOF of 29 000 (molethyl/molNi/h) and 99% selectivity for 1-butene under ethylene pressure of 15 bar. The catalyst is also applicable for continuous production in the packed column micro-reactor with a TON of 72 000 (molethyl/molNi). The mechanistic insight for the ethylene oligomerization has been examined by density functional theory (DFT) calculations. The calculated energy profiles for homogeneous complexes and truncated MOF models reveal varying rate-determining step as ß-hydrogen elimination and migratory insertion, respectively. The activation barrier of UiO-66-L5-NiCl2 is lower than other systems, possibly due to the restriction effect caused by clusters and ligands. A comprehensive analysis of the structural parameters of catalysts shows that the cone angle as steric descriptor and butene desorption energy as thermodynamic descriptor can be applied to estimate the reactivity turnover frequency (TOF) with the optimum for UiO-66-L5-NiCl2. This work represents the systematic optimization of ligand effect through combination of experimental and theoretical data and presents a proof-of-concept for ethylene dimerization catalyst through simple heterogenization of organometallic catalyst on MOF.

5.
Biochem Biophys Res Commun ; 716: 150039, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38701556

RESUMO

The objective of this study was to better characterize the role of the glutamine transporter SLC38A1 in cervical cancer and explore the underlying mechanisms. Data from public databases and clinical cervical cancer tissue samples were used to assess the expression of SLC38A1 and its prognostic significance. Immunohistochemical staining, qRT-PCR, and Western blotting were used to evaluate the expression of relevant genes and proteins. Cell viability, cell cycle, apoptosis, and intracellular glutamine content were measured using CCK-8, flow cytometry, and biochemical assays. Additionally, the RNA immunoprecipitation (RIP) assay was used to examine the impact of METTL3/IGF2BP3 on the m6A modification of the SLC38A1 3'UTR. Both cervical cancer specimens and cells showed significantly increased expression of SLC38A1 and its expression correlated with an unfavorable prognosis. Knockdown of SLC38A1 inhibited cell viability and cell cycle progression, induced apoptosis, and suppressed tumor growth in vivo. Glutaminase-1 inhibitor CB-839 reversed the effects of SLC38A1 overexpression. METTL3 promoted m6A modification of SLC38A1 and enhanced its mRNA stability through IGF2BP3 recruitment. Moreover, METTL3 silencing inhibited cell viability, cell cycle progression, intracellular glutamine content, and induced apoptosis, but these effects were reversed by SLC38A1 overexpression. In conclusion, METTL3-mediated m6A methylation of SLC38A1 stimulates cervical cancer progression. SLC38A1 inhibition is a potential therapeutic strategy for cervical cancer.


Assuntos
Adenosina , Metiltransferases , Neoplasias do Colo do Útero , Neoplasias do Colo do Útero/metabolismo , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/patologia , Humanos , Feminino , Metiltransferases/metabolismo , Metiltransferases/genética , Adenosina/análogos & derivados , Adenosina/metabolismo , Adenosina/genética , Metilação , Linhagem Celular Tumoral , Proliferação de Células/genética , Animais , Sistema A de Transporte de Aminoácidos/metabolismo , Sistema A de Transporte de Aminoácidos/genética , Apoptose/genética , Regulação Neoplásica da Expressão Gênica , Camundongos Nus , Camundongos , Prognóstico , Sobrevivência Celular/genética
6.
Artigo em Inglês | MEDLINE | ID: mdl-38750156

RESUMO

PURPOSE: To develop a model based on whole-liver radiomics features of pre-treatment enhanced MRI for predicting the prognosis of hepatocellular carcinoma (HCC) patients undergoing continued transarterial chemoembolization (TACE) after TACE-resistance. MATERIALS AND METHODS: Data from 111 TACE-resistant HCC patients between January 2014 and March 2018 were retrospectively collected. At a ratio of 7:3, patients were randomly assigned to developing and validation cohorts. The whole-liver were manually segmented, and the radiomics signature was extracted. The tumor and liver radiomics score (TLrad-score) was calculated. Models were trained by machine learning algorithms and their predictive efficacies were compared. RESULTS: Tumor stage, tumor burden, body mass index, alpha-fetoprotein, and vascular invasion were revealed as independent risk factors for survival. The model trained by Random Forest algorithms based on tumor burden, whole-liver radiomics signature, and clinical features had the highest predictive efficacy, with c-index values of 0.85 and 0.80 and areas under the ROC curve of 0.96 and 0.83 in the developing cohort and validation cohort, respectively. In the high-rad-score group (TLrad-score > - 0.34), the median overall survival (mOS) was significantly shorter than in the low-rad-score group (17 m vs. 37 m, p < 0.001). A shorter mOS was observed in patients with high tumor burden compared to those with low tumor burden (14 m vs. 29 m, p = 0.007). CONCLUSION: The combined radiomics model from whole-liver signatures may effectively predict survival for HCC patients continuing TACE after TACE refractoriness. The TLrad-score and tumor burden are potential prognostic markers for TACE therapy following TACE-resistance.

7.
J Am Chem Soc ; 146(20): 14174-14181, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38723205

RESUMO

Construction of robust heterogeneous catalysts with atomic precision is a long-sought pursuit in the catalysis field due to its fundamental significance in taming chemical transformations. Herein, we present the synthesis of a single-crystalline pyrazolate metal-organic framework (MOF) named PCN-300, bearing a lamellar structure with two distinct Cu centers and one-dimensional (1D) open channels when stacked. PCN-300 exhibits exceptional stability in aqueous solutions across a broad pH range from 1 to 14. In contrast, its monomeric counterpart assembled through hydrogen bonding displays limited stability, emphasizing the role of Cu-pyrazolate coordination bonds in framework robustness. Remarkably, the synergy of the 1D open channels, excellent stability, and the active Cu-porphyrin sites endows PCN-300 with outstanding catalytic activity in the cross dehydrogenative coupling reaction to form the C-O bond without the "compulsory" ortho-position directing groups (yields up to 96%), outperforming homogeneous Cu-porphyrin catalysts. Moreover, PCN-300 exhibits superior recyclability and compatibility with various phenol substrates. Control experiments reveal the synergy between the Cu-porphyrin center and framework in PCN-300 and computations unveil the free radical pathway of the reaction. This study highlights the power of robust pyrazolate MOFs in directly activating C-H bonds and catalyzing challenging chemical transformations in an environmentally friendly manner.

8.
J Am Chem Soc ; 146(22): 15446-15452, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38776639

RESUMO

Linker installation is a potent strategy for integrating specific properties and functionalities into metal-organic frameworks (MOFs). This method enhances the structural diversity of frameworks and enables the precise construction of robust structures, complementing the conventional postsynthetic modification approaches, by fully leveraging open metal sites and active organic linkers at targeting locations. Herein, we demonstrated an insertion of a d-camphorate linker into a flexible Zr-based MOF, PCN-700, through linker installation. The resultant homochiral MOF not only exhibits remarkable stability but also functions as a highly efficient luminescent material for enantioselective sensing. Competitive absorption and energy/electron transfer processes contribute to the sensing performance, while the difference in binding affinities dominates the enantioselectivity. This work presents a straightforward route to crafting stable homochiral MOFs for enantioselective sensing.

9.
Artigo em Inglês | MEDLINE | ID: mdl-38627901

RESUMO

Further development in the area of medicinal chemistry requires facile and atom-economical C-N bond formation from readily accessible precursors using recyclable and reusable catalysts with low process toxicity. In this work, direct N-alkylation of amines with alcohols is performed with a series of Ir-phosphine-functionalized metal-organic framework (MOF) heterogeneous catalysts. The grafted monophosphine-Ir complexes were studied comprehensively to illustrate the ligand-dependent reactivity. The afforded MOF catalysts exhibited high reactivity and selectivity toward N-alkylamine product formation, especially UiO-66-PPh2-Ir, which showed 90% conversion after recycling with no catalyst residue remaining in the product after the reaction. Furthermore, analyses of the active catalyst, mechanistic studies, control experiments, and H2 adsorption tests are consistent with the conclusion that immobilization of the iridium complex on the MOF support enables the formation of the iridium-monophosphine complex and enhances its stability during the reaction. To illustrate the potential of the catalyst for application in medicinal chemistry, two pharmaceutical precursors were synthesized with up to 99% conversion and selectivity.

11.
J Am Chem Soc ; 146(14): 9811-9818, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38531024

RESUMO

Perfluorooctanoic acid (PFOA) is an environmental contaminant ubiquitous in water resources, which as a xenobiotic and carcinogenic agent, severely endangers human health. The development of techniques for its efficient removal is therefore highly sought after. Herein, we demonstrate an unprecedented zirconium-based MOF (PCN-999) possessing Zr6 and biformate-bridged (Zr6)2 clusters simultaneously, which exhibits an exceptional PFOA uptake of 1089 mg/g (2.63 mmol/g), representing a ca. 50% increase over the previous record for MOFs. Single-crystal X-ray diffraction studies and computational analysis revealed that the (Zr6)2 clusters offer additional open coordination sites for hosting PFOA. The coordinated PFOAs further enhance the interaction between coordinated and free PFOAs for physical adsorption, boosting the adsorption capacity to an unparalleled high standard. Our findings represent a major step forward in the fundamental understanding of the MOF-based PFOA removal mechanism, paving the way toward the rational design of next-generation adsorbents for per- and polyfluoroalkyl substance (PFAS) removal.

12.
J Am Chem Soc ; 146(2): 1491-1500, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38170908

RESUMO

3D metal-organic frameworks (MOFs) have gained attention as heterogeneous photocatalysts due to their porosity and unique host-guest interactions. Despite their potential, MOFs face challenges, such as inefficient mass transport and limited light penetration in photoinduced energy transfer processes. Recent advancements in organic photocatalysis have uncovered a variety of photoactive cores, while their heterogenization remains an underexplored area with great potential to build MOFs. This gap is bridged by incorporating photoactive cores into 2D MOF nanosheets, a process that merges the realms of small-molecule photochemistry and MOF chemistry. This approach results in recyclable heterogeneous photocatalysts that exhibit an improved mass transfer efficiency. This research demonstrates a bottom-up synthetic method for embedding photoactive cores into 2D MOF nanosheets, successfully producing variants such as PCN-641-NS, PCN-643-NS, and PCN-644-NS. The synthetic conditions were systematically studied to optimize the crystallinity and morphology of these 2D MOF nanosheets. Enhanced host-guest interactions in these 2D structures were confirmed through various techniques, particularly solid-state NMR studies. Additionally, the efficiency of photoinduced energy transfer in these nanosheets was evidenced through photoborylation reactions and the generation of reactive oxygen species (ROS).

13.
Chin J Integr Med ; 30(4): 359-365, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37528326

RESUMO

The transformation and implementation of clinical practice guidelines for integrated traditional Chinese medicine (TCM) and Western medicine (WM) is crucial to the adoption of medical science and technological findings and is an important way for TCM to be made available to the world. First, clinical practice guidelines (CPGs) of TCM and WM integration in recent years was analyzed to clarify the current situation and problems in the existing guidelines according to the following four perspectives: (1) perspective of TCM and WM integration in guidelines, (2) diagnosis Using integrated TCM and WM, (3) integration of TCM and WM treatment, (4) promoting TCM and WM integration. Secondly, the information and quality evaluation of CPGs for integrated Chinese and Western medicine in 2020-2022 were analyzed to explore the degree and methods of integration of Chinese and Western medicine guidelines. And last this study aimed to lay a foundation for the further establishment of Chinese characteristic, repeatable, and calculable clinical practice guidelines of TCM and WM integration.


Assuntos
Medicamentos de Ervas Chinesas , Medicina Tradicional Chinesa , Humanos , Medicina Tradicional Chinesa/métodos , Povo Asiático , Medicamentos de Ervas Chinesas/uso terapêutico
14.
Adv Mater ; 36(12): e2209073, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36693232

RESUMO

As water scarcity becomes a pending global issue, hygroscopic materials prove a significant solution. Thus, there is a good cause following the structure-performance relationship to review the recent development of hygroscopic materials and provide inspirational insight into creative materials. Herein, traditional hygroscopic materials, crystalline frameworks, polymers, and composite materials are reviewed. The similarity in working conditions of water harvesting and carbon capture makes simultaneously addressing water shortages and reduction of greenhouse effects possible. Concurrent water harvesting and carbon capture is likely to become a future challenge. Therefore, an emphasis is laid on metal-organic frameworks (MOFs) for their excellent performance in water and CO2 adsorption, and representative role of micro- and mesoporous materials. Herein, the water adsorption mechanisms of MOFs are summarized, followed by a review of MOF's water stability, with a highlight on the emerging machine learning (ML) technique to predict MOF water stability and water uptake. Recent advances in the mechanistic elaboration of moisture's effects on CO2 adsorption are reviewed. This review summarizes recent advances in water-harvesting porous materials with special attention on MOFs and expects to direct researchers' attention into the topic of concurrent water harvesting and carbon capture as a future challenge.

15.
Angew Chem Int Ed Engl ; 63(12): e202315075, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38135664

RESUMO

Phosphine-functionalized metal-organic frameworks (P-MOFs) as an emerging class of coordination polymers, have provided novel opportunities for the development of heterogeneous catalysts. Yet, compared with the ubiquitous phosphine systems in homogeneous catalysis, heterogenization of phosphines in MOFs is still at its early stage. In this Minireview, we summarize the synthetic strategies, characterization and catalytic reactions based on the P-MOFs reported in literature. In particular, various catalytic reactions are discussed in detail in terms of phosphine ligand structure-function relationship, including the potential obstacles for future development. Finally, we discuss the possible solutions, including new types of reactions and techniques as the perspectives for the development of P-MOF catalysts, highlighting the opportunities and challenges.

16.
J Am Chem Soc ; 145(50): 27690-27701, 2023 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-38069810

RESUMO

The porous coordination cage PCC-1 represents a new platform potentially useful for the cellular delivery of drugs with poor cell permeability and solubility. PCC-1 is a metal-organic polyhedron constructed from zinc metal ions and organic ligands through coordination bonds. PCC-1 possesses an internal cavity that is suitable for drug encapsulation. To better understand the biocompatibility of PCC-1 with human cells, the cell entry mechanism, disassembly, and toxicity of the nanocage were investigated. PCC-1 localizes in the nuclei and cytoplasm within minutes upon incubation with cells, independent of endocytosis and cargo, suggesting direct plasma membrane translocation of the nanocage carrying its guest in its internal cavity. Furthermore, the rates of cell entry correlate to extracellular concentrations, indicating that PCC-1 is likely diffusing passively through the membrane despite its relatively large size. Once inside cells, PCC-1 disintegrates into zinc metal ions and ligands over a period of several hours, each component being cleared from cells within 1 day. PCC-1 is relatively safe for cells at low micromolar concentrations but becomes inhibitory to cell proliferation and toxic above a concentration or incubation time threshold. However, cells surviving these conditions can return to homeostasis 3-5 days after exposure. Overall, these findings demonstrate that PCC-1 enters live cells by crossing biological membranes spontaneously. This should prove useful to deliver drugs that lack this capacity on their own, provided that the dosage and exposure time are controlled to avoid toxicity.


Assuntos
Sistemas de Liberação de Medicamentos , Internalização do Vírus , Humanos , Membrana Celular/metabolismo , Metais/metabolismo , Compostos Orgânicos/metabolismo , Zinco/metabolismo , Íons/metabolismo
17.
Mil Med Res ; 10(1): 45, 2023 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-37752599

RESUMO

Integrated traditional Chinese medicine (TCM) and Western medicine (WM) is a new medical science grounded in the knowledge bases of both TCM and WM, which then forms a unique modern medical system in China. Integrated TCM and WM has a long history in China, and has made important achievements in the process of clinical diagnosis and treatment. However, the methodological defects in currently published clinical practice guidelines limit its development. The organic integration of TCM and WM is a deeper integration of TCM and WM. To realize the progression of "integration" to "organic integration", a targeted and standardized guideline development methodology is needed. Therefore, the purpose of this study is to establish a standardized development procedure for clinical practice guidelines for the organic integration of TCM and WM to promote the systematic integration of TCM and WM research results into clinical practice guidelines in order to achieve optimal results as the whole is greater than the sum of the parts.


Assuntos
Medicina Tradicional Chinesa , Guias de Prática Clínica como Assunto , Humanos , China
18.
Solid State Nucl Magn Reson ; 127: 101898, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37639882

RESUMO

The proton-phosphorus (H-P) cross-polarization (CP) is effective in Sn(HPO4)2·H2O despite of the presence of paramagnetic ion impurities. Polarization constants TH-P and 1H T1ρ times are measured in static Sn(HPO4)2·H2O by the kinetic variable-temperature H-P CP experiments. The temperature dependence of the 1H T1ρ times is interpreted in terms of proton movements in the interlayer space occurring between the phosphate groups without participation of the water molecules. The process requires an activation energy of 8.7 ± 0.7 kcal/mol. The MAS effect on the 1H T1ρ times is shown and discussed.

19.
J Am Chem Soc ; 145(32): 18029-18035, 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37530761

RESUMO

Ferrocene is perhaps the most popular and well-studied organometallic molecule, but our understanding of its structure and electronic properties has not changed for more than 70 years. In particular, all previous attempts of chemically oxidizing pure ferrocene by binding directly to the iron center have been unsuccessful, and no significant change in structure or magnetism has been reported. Using a metal organic framework host material, we were able to fundamentally change the electronic and magnetic structure of ferrocene to take on a never-before observed physically stretched/bent high-spin Fe(II) state, which readily accepts O2 from air, chemically oxidizing the iron from Fe(II) to Fe(III). We also show that the binding of oxygen is reversible through temperature swing experiments. Our analysis is based on combining Mößbauer spectroscopy, extended X-ray absorption fine structure, in situ infrared, SQUID, thermal gravimetric analysis, and energy dispersive X-ray fluorescence spectroscopy measurements with ab initio modeling.

20.
J Integr Med ; 21(5): 413-422, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37652781

RESUMO

Severe pneumonia is one of the most common infectious diseases and the leading cause of sepsis and septic shock. Preventing infection, balancing the patient's immune status, and anti-coagulation therapy are all important elements in the treatment of severe pneumonia. As multi-target agents, Xuebijing injection (XBJ) has shown unique advantages in targeting complex conditions and saving the lives of patients with severe pneumonia. This review outlines progress in the understanding of XBJ's anti-inflammatory, endotoxin antagonism, and anticoagulation effects. From the hundreds of publications released over the past few years, the key results from representative clinical studies of XBJ in the treatment of severe pneumonia were selected and summarized. XBJ was observed to effectively suppress the release of pro-inflammatory cytokines, counter the effects of endotoxin, and assert an anticoagulation effect in most clinical trials, which are consistent with experimental studies. Collectively, this evidence suggests that XBJ could play an important and expanding role in clinical medicine, especially for sepsis, septic shock and severe pneumonia. Please cite this article as: Zhang M, Zheng R, Liu WJ, Hou JL, Yang YL, Shang HC. Xuebijing injection, a Chinese patent medicine, against severe pneumonia: Current research progress and future perspectives. J Integr Med. 2023; 21(5): 413-422.


Assuntos
Sepse , Choque Séptico , Humanos , Medicamentos sem Prescrição , Choque Séptico/tratamento farmacológico , Sepse/tratamento farmacológico , Endotoxinas , Anticoagulantes/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...