Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Glob Chall ; 8(2): 2300223, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38529414

RESUMO

Solar power tower technology has strong potential among the other concentration solar power techniques for large power generation. Therefore, it is necessary to make a new and efficient power conversion system for utilizing the solar power tower system. In present research, a novel combined cycle is proposed to generate power for the application of the solar power tower. The pre-compression configuration of the Brayton cycle is used as a topping cycle in which helium is taken as the working fluid. The transcritical CO2 cycle is used as bottoming cycle for using the waste heat. The proposed system is investigated based on exergy, energy, and exergoenvironmental point of view using computational technique engineering equation solver. Also, the parametric analysis is carried out to check the impact of the different variables on the system performance. It is concluded that the overall plant's optimized thermal and exergy efficiencies are obtained as 31.59% and 33.12%, respectively, at 800 °C optimum temperature of combined cycle and 850 W m-2 of direct normal irradiation and 2.278 of compressor pressure ratio. However, exergetic stability factor and exergoenvironmental impact index are observed as 0.5952 and 0.6801 respectively. The present proposed system performs better than the previous studies with fewer components.

2.
Glob Chall ; 7(12): 2300191, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38094864

RESUMO

In the present study, a novel combined power cycle for solar power tower (SPT) system consisting of helium Brayton cycle (HBC) and transcritical CO2 (TCO2) for waste heat recovery is being studied for carbon-free generation. The performance of the proposed SPT based combined cycle (SPT-HBC-TCO2 cycle) is compared with SPT based basic cycle (SPT-HBC) based on exergoeconomic and thermodynamic analyses. It is concluded that the SPT-based combined cycle (SPT-HBC-TCO2 cycle) produces a thermal efficiency of 32.39% and exergy efficiency of 34.68% with an electricity cost of 1.613 UScent kWh-1. The exergy and thermal efficiency of the SPT-based combined cycle are enhanced by 13.18% and 13.21% respectively, while electricity cost is reduced by around 2% as compared to the SPT-based basic cycle (SPT-HBC) configuration at base conditions. A notable finding is that, despite the additional expenditures related to the bottoming cycle, the cost of electricity is lesser for the proposed combined cycle. Additionally, a comparison with the related prior published research exhibits that the performance of the current novel system is superior to that of the systems based on steam rankine cycle and supercritical CO2 cycles.

3.
Analyst ; 141(4): 1294-300, 2016 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-26813413

RESUMO

Nafion has received great attention as a proton conductor that can block negative ions. Here, we report the effect of a Nafion coating on an anodic aluminium oxide (AAO) nanoporous membrane on its function of ion rejection and filtering depending on the electric field. In our experiments, Nafion, once coated, was used to repel the negative ions (anions) from the coated surface, and then selectively allowed positive ions (cations) to pass through the nanopores in the presence of an electric field. To demonstrate the proof-of-concept validation, we coated Nafion solution onto the surface of AAO membranes with 20 nm nanopores average diameter at different solution concentration levels. Vacuum filtration methods for Nafion coating were vertically applied to the plane of an AAO membrane. An electric field was then applied to the upper surface of the Nafion-coated AAO membrane to investigate if ion rejection and filtering was affected by the presence of the electric field. Both anions and cations could pass through the AAO nanopores without an electric field applied. However, only cations could well pass through the AAO nanopores under an electric field, thus effectively blocking anions from passing through the nanopores. This result shows that ion filtration of electrons has been selectively performed while the system also works as a vital catalyst in reactivating Nafion via electrolysis. A saturated viscosity ratio of Nafion solution for the coating was also determined. We believe that this approach is potentially beneficial for better understanding the fundamentals of selective ion filtration in nanostructures and for promoting the use of nanostructures in potential applications such as ion-based water purification and desalination system at the nanoscale in a massively electrically integrated format.

4.
Sci Rep ; 5: 11738, 2015 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-26133999

RESUMO

Understanding the behaviour of space-charge between two electrodes is important for a number of applications. The Shockley-Ramo theorem and equivalent circuit models are useful for this; however, fundamental questions of the microscopic nature of the space-charge remain, including the meaning of capacitance and its evolution into a bulk property. Here we show that the microscopic details of the space-charge in terms of resistance and capacitance evolve in a parallel topology to give the macroscopic behaviour via a charge-based circuit or electric-field-based circuit. We describe two approaches to this problem, both of which are based on energy conservation: the energy-to-current transformation rule, and an energy-equivalence-based definition of capacitance. We identify a significant capacitive current due to the rate of change of the capacitance. Further analysis shows that Shockley-Ramo theorem does not apply with a time-varying applied bias, and an additional electric-field-based current is identified to describe the resulting motion of the space-charge. Our results and approach provide a facile platform for a comprehensive understanding of the behaviour of space-charge between electrodes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...