Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 942: 173796, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-38851327

RESUMO

Increase in road traffic leads to increased concentrations of tire-wear particles (TWPs), a prominent source of microplastics from vehicles, in road dust. These particles can re-enter the atmosphere or move into aquatic ecosystems via runoff, impacting the environment. Consequently, accurately assessing and managing TWP levels in road dust is crucial. However, the ISO method (ISO/TS 20593 and 21396) uses a constant ratio of styrene-butadiene rubber (SBR) to natural rubber (NR) for all tires, disregarding the variability in tire composition across different types and brands. Our study found substantial SBR content (15.7 %) in heavyweight truck tires, traditionally believed to be predominantly NR. We evaluated the SBR/NR content in 15 tire types and proposed a method to more accurately evaluate TWP concentrations in road dust from five different locations. Our findings suggest that the conventional ISO method may underestimate the concentrations of TWP due to its reliance on a static ratio of SBR/NR. This study underscores the necessity for a more flexible approach that can adapt to the variability in SBR and NR content across different tire types. By delineating the limitations inherent in current assessment methods, our research contributes to a more adaptable understanding of TWP concentrations in road dust. This advancement prompts the development of a revised methodology that more accurately reflects the diverse compositions of tire rubber in environmental samples.

2.
Sci Total Environ ; 905: 167227, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-37734610

RESUMO

Air pollution, a pressing global issue, is significantly exacerbated by airborne particulate matter (PM), affecting air quality and human health. Urban vehicular activities majorly contribute to PM rise through both exhaust and non-exhaust emissions. Despite strides in managing exhaust emissions, non-exhaust particles, such as tire wear particles (TWP) remain under-addressed. This research proposes a method for estimating TWP concentrations using PM10 data and traffic activity, which could offer a valuable tool for controlling roadside fine particles and TWP. This paper introduces a ternary plotting technique and step-by-step procedure to estimate TWP levels in road dust using only PM10 and traffic data. Traditional analysis of TWP via pyrolysis-gas chromatography-mass spectrometry is complex and time-consuming. Hence, our proposed approach presents an alternate method that leverages readily accessible PM and traffic data, providing critical information for road management interpretation. The triangular plot analysis demonstrated a linear correlation: [log(Traffic) + 2]-[250,000/TWP-13]-0.18PM10. While the resulting correlation may vary based on specific road conditions, the method can be tailored to different regions, offering insights into efficient estimation of TWP concentrations and promoting improved roadside pollution management.

4.
Sci Total Environ ; 892: 164803, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37302592

RESUMO

With the upsurge in the use of disposable masks during the coronavirus disease pandemic, improper disposal of discarded masks and their negative impact on the environment have emerged as major issues. Improperly disposed of masks release various pollutants, particularly microplastic (MP) fibers, which can harm both terrestrial and aquatic ecosystems by interfering with the nutrient cycling, plant growth, and the health and reproductive success of organisms. This study assesses the environmental distribution of polypropylene (PP)-containing MPs, generated from disposable masks, using material flow analysis (MFA). The system flowchart is designed based on the processing efficiency of various compartments in the MFA model. The highest amount of MPs (99.7 %) is found in the landfill and soil compartments. A scenario analysis reveals that waste incineration significantly reduces the amount of MP transferred to landfills. Therefore, considering cogeneration and gradually increasing the incineration treatment rate are crucial to manage the processing load of waste incineration plants and minimize the negative impact of MPs on the environment. The findings provide insights into the potential environmental exposure associated with the improper disposal of waste masks and indicate strategies for sustainable mask disposal and management.


Assuntos
Ecossistema , Máscaras , Microplásticos , Plásticos , Polipropilenos
5.
Environ Pollut ; 330: 121787, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37156438

RESUMO

Strict environmental laws have been enacted to regulate the emission of exhaust particulate matter (PM), which is one of the most hazardous pollutants that reduce air quality and pose a serious risk to the human health. In addition, non-exhaust PM, such as road wear, tire wear, and brake wear debris, is a significant source of airborne pollutants. Road dust less than 100 µm in size may include tire wear particles (TWPs), which are broken down into finer particles with sizes on the order of tens of micrometers because of weathering. TWPs can be transported to water bodies via runoff, potentially contaminating water systems and negatively affecting aquatic ecosystems. Therefore, ecotoxicity tests using reference TWPs are required to investigate the impact of TWPs on the human health and environment. In this study, aged TWPs were produced using dry-, wet-, and cryo-milling methods, and the dispersion stability of TWPs in dechlorinated water was evaluated. Aged TWPs prepared by dry- and wet-milling had an average particle size of 20 µm, whereas pristine TWPs had an irregular shape and average particle size of 100 µm. The capacity of the ball-milling cylinder and excessively long 28-d generation time constrain the amount of aged TWPs that can be produced through conventional milling. In contrast, cryo-milling reduces the particle size of TWPs at the rate of -275.0 µm/d, which is nine times higher than that upon dry- and wet-milling. Dispersed cryo-milled TWPs had a hydrodiameter of 2.02 µm and were more stable in the aqueous phase in relation to the other aged TWPs. The results of this study suggest that cryo-milled TWPs can be used for aquatic exposure assessments as controls for real-world TWPs.


Assuntos
Ecossistema , Poluentes Ambientais , Humanos , Idoso , Material Particulado/toxicidade , Material Particulado/análise , Tamanho da Partícula , Poeira/análise , Emissões de Veículos/análise , Monitoramento Ambiental/métodos
6.
Sci Total Environ ; 884: 163878, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37142046

RESUMO

Tire-wear particles (TWP) from vehicles serves as a non-exhaust emission source. The mass content of metallic species in road dust may increase owing to the traffic of heavy vehicles and industrial activity; consequently, metallic particles are also present in road dust. Herein, road dust collected from steel industrial complexes with high traffic of high-weight vehicles and the composition distribution of five size-fractioned particle sizes were analyzed. Road dust samples were collected from three areas near steelmaking complexes. The mass distribution of TWP, carbon black (CB), bituminous coal, and heavy metals (Fe, Zn, Mn, Pb, Ni, As, Cu, Cd, and Hg) in different size fractions of road dust was quantified by combining four different analytical techniques. In the magnetic separation for <45 µm fraction, 34.4 wt% and 50.9 wt% was removed for steelmaking and steel-related industrial complexes, respectively. As the particle size decreased, the mass content of Fe, Mn, and TWP increased. The enrichment factors of Mn, Zn, and Ni were higher than two, indicating that they were related to industrial activities in steel complexes. The maximum concentrations of TWP and CB originating from the vehicle varied depending on the region and particle size range: TWP 2.066 wt% at 45-75 µm (industrial complex) and CB 5.559 wt% at 75-160 µm (steel complex). Coal was only found in the steel complex. Finally, to reduce the exposure of the finest particles to road dust, three methods were suggested. Magnetic fraction must be removed from road dust using magnetic separation; the fly dust of coal during transportation must be suppressed, and covers must be used in coal yards; the mass contents of TWP and CB in road dust should be removed by vacuum cleaning instead of water flushing.


Assuntos
Metais Pesados , Fuligem , Monitoramento Ambiental , Poeira/análise , Metais Pesados/análise , Carvão Mineral , Medição de Risco , Cidades
7.
Sci Total Environ ; 850: 158058, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-35981582

RESUMO

Nanoplastics has become a growing environmental concern because these tiny particles can easily penetrate biological tissues and have possible toxic effects. FT-IR and Raman spectroscopy methods are currently used to analyze microplastics (5 mm or less), but they encounter difficulty when the particles are below 1 µm. On the other hand, thermoanalysis of nanoplastics does not provide the size information. Therefore, herein, we proposed the colorimetric detection method with gold nanoparticles (AuNPs) to measure the concentration of polystyrene nanoplastics (PSNPs, size = 350 and 880 nm) through a color change that is obvious to the naked eye. A mixed dispersion of PSNPs and AuNPs was added with acetone, a good solvent for polystyrene. In this colorimetric detection, acetone acted as a key component to enhance or hinder the aggregation of AuNPs around PSNPs. Namely, acetone itself promoted AuNPs aggregation, but it was dissolved partially PS chains from PSNSs to act as inhibitor of aggregation of AuNPs. These two contradictory feature of acetone to AuNPs and PSNPs affect the aggregation and color of AuNPs (dispersed = red, aggregated = blue). Finally, the heat-map between PSNSs and acetone was prepared to use for estimation of concentration of PSNPs in the aqueous solution with naked eye. To the best of our knowledge, this is the first attempt to measure nanoplastics by colorimetry.


Assuntos
Ouro , Nanopartículas Metálicas , Acetona , Colorimetria/métodos , Ouro/química , Nanopartículas Metálicas/química , Microplásticos , Plásticos , Poliestirenos , Solventes , Espectroscopia de Infravermelho com Transformada de Fourier
8.
Sci Total Environ ; 842: 156830, 2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-35738373

RESUMO

Exhaust and non-exhaust particulate matter (PM) is regarded as the most significant airborne during driving. Among the source of non-exhaust PM, the tire-wear particles (TWP) can be quantified using pyrolysis-gas chromatography/mass spectrometry (Py-GC-MS). TWPs are fragmented by continuous weathering once exposed to the road. Approximately 5 wt% of carbon black (CB) bound in the rubber matrix of TWPs tends to detach from it, and thus some portion of free-bound CB could be co-existed in the road dust. Although there are existing methods for analyzing pure CB and TWPs, only few analysis techniques on the amount of free-bound CB in contaminant samples have been discovered. Herein, we propose a method for quantifying the total and free-bound CB in road dust using a combination of four analytical tools: a semi-continuous carbon analyzer, element analyzer, thermogravimetric analyzer, and Py-GC-MS. This study is the first attempt in quantifying the concentration of nano-CB derived from TWPs in road dust. The proposed methodology was applied to the samples collected from five open sites, three closed sites, and four types of air conditioner (AC) filters in passenger vehicles. Compared to the samples obtained in open sites, the road dust in the closed sites exhibited 21.5 times higher TWP content (59,747 mg/kg) and 5.1 times higher free-bound CB content (14,632 mg/kg). In addition, unintentional driver respiratory exposure to PM fixed in the vehicle filters was discovered owing to the increase in CB and TWP contents in aged AC filters.


Assuntos
Poluentes Atmosféricos , Poeira , Poluentes Atmosféricos/análise , Poeira/análise , Monitoramento Ambiental/métodos , Tamanho da Partícula , Material Particulado/análise , Fuligem/análise , Emissões de Veículos/análise
9.
Korean J Chem Eng ; 39(10): 2842-2848, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35730023

RESUMO

Microplastics, or nanoplastics fragmented to sizes in the nanoscale, can easily penetrate living organisms as well as human organs, increasing the risk of toxicity. However, it is challenging to obtain the size of nanoplastics using thermal analysis methods such as pyrolysis gas chromatography/mass spectrometry or thermal desorption-gas chromatography/mass spectrometry, which are used to analyze nanoplastics. In this study, the coupling effect due to the aggregation of gold nanoparticles (AuNPs) was used to measure the concentration of polystyrene nanoplastics (PSNPs). Experiments were conducted to measure the concentration of PSNPs using an ultraviolet-visible spectrophotometer using the phenomenon that the color of the colloid changes when AuNPs are aggregated. The differences in absorbance before and after aggregation after the addition of NaCl were measured. As a result of the experiment, when 20 mM NaCl was added to the solution in which AuNPs and PSNPs were dispersed, the difference in absorbance before and after aggregation and the concentration of PSNPs exhibited high linearity. In addition, 350 and 880 nm-sized PSNPs could be distinguished from each other because of their different linearities. The concentration of PSNPs was measured easily and conveniently without requiring a skilled operator, expensive analytical equipment; additionally, the process was not time or labor intensive, and it was shown that particle size can be measured by distinguishing particles of different sizes. Electronic Supplementary Material: Supplementary material is available for this article at 10.1007/s11814-022-1153-9 and is accessible for authorized users.

10.
Chemosphere ; 303(Pt 1): 134976, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35595106

RESUMO

Particulate matter (PM) from automobile exhaust has drastic effects on human health. The enforcement of environmental laws has controlled vehicle emissions and reduced the total PM. However, another significant source of PM is debris from tire wear, break wear, and road wear. In particular, tire-wear particles (TWPs) are further fragmented into nanoparticles, similar to the PMx or black carbon (BC) sources. As approximately 30 wt% of carbon black (CB) is used as filler in tires, TWPs can fragment into free-bound nano-CB. This study evaluates the emission factors of BC from the ternary plots of PMx and BC to estimate the concentration of nano-CB in TWPs. Based on the emission factors of BC for TWP, approximately 500 monitoring data points were acquired at four different sites. Semi-closed sites in a field measurement test have 2.9-4.0 times larger BC concentration than open sites. The mass concentration of nano-CB evaluated with the BC data and emission factors at the open sites is 22.47-23.96 ng/m3, whereas that at the semi-closed sites is 66.32-90.33 ng/m3. Transmission electron microscopy analysis with scanning mobility particle sizer and selected-area electron diffraction reveals grape-like aggregated nanoparticles, which is considered as CB. To compare the effect of the washing out of airborne particulates by rain, further analysis is conducted on the interior and exterior of the tunnel on a rainy day. While the concentration of PMs was effectively reduced by rainfall, the amount of BC and CB in the interior of a tunnel was not changed. Namely, even under rainfall, nano-CB still exists in the tunnels and thus free-bound CB and nanoparticles released from TWP will be effected on the human health.


Assuntos
Poluentes Atmosféricos , Material Particulado , Poluentes Atmosféricos/análise , Carbono/análise , Monitoramento Ambiental , Humanos , Tamanho da Partícula , Material Particulado/análise , Fuligem/análise , Emissões de Veículos/análise
11.
ACS Omega ; 3(5): 5244-5251, 2018 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-30023911

RESUMO

Plasmonic-mediated photothermal heating under near-infrared (NIR) irradiation is an emerging key technology in the field of photothermal therapy and chemical reactions. However, there are few reports of photothermal film (dry-type patch), and thus, in this work, we developed the plasmonic-induced photothermal cellulose-patch operating in the NIR region. Hollow and spikelike gold nanostructures, gold-spikes, as plasmonic nanoparticles were prepared and decorated on silica microrods, which were prepared based on a unicellular organism, Escherichia coli, as a framework. In addition, freestanding cellulose-patch was prepared by mixing filter-paper pulp and armored golden E. coli (AGE) microrods. The major absorbing peak of AGE solution was revealed to be 873 nm, and the surface temperature of patch was increased to 264 °C within a very short time (1 min). When NIR laser was irradiated on the patch dipped in the water, the formation of water vapor and air bubbles was observed. The heating efficiency of indirect heat transfer via conduction from patch-to-water was 35.0%, while that of direct heat transfer via radiation from patch in water was 86.1%. Therefore, the cellulose-patch containing AGE microrods has possible applicability to desalination and sterilization because of its fast heating rate and high light-to-heat conversion under the irradiation of low-powered IR laser.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...