Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 9(1): 12440, 2019 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-31455794

RESUMO

We propose an optical scheme of discrete quantum Fourier transform (DQFT) via ancillary systems using quantum dots (QDs) confined in single-sided cavities (QD-cavity systems). In our DQFT scheme, the main component is a controlled-rotation k (CRk) gate, which utilizes the interactions between photons and QDs, consisting of two QD-cavity systems. Since the proposed CRk gate can be experimentally implemented with high efficiency and reliable performance, the scalability of multi-qubit DQFT scheme can also be realized through the simple composition of the proposed CRk gates via the QD-cavity systems. Subsequently, in order to demonstrate the performance of the CRk gate, we analyze the interaction between a photon and a QD-cavity system, and then indicate the condition to be efficient CRk gate with feasibility under vacuum noise and sideband leakage.

2.
Sci Rep ; 9(1): 10151, 2019 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-31300664

RESUMO

We represent an optical scheme using cross-Kerr nonlinearities (XKNLs) and quantum dot (QD) within a single-sided optical cavity (QD-cavity system) to generate three-photon entangled W state containing entanglement against loss of one photon of them. To generate W state (three-photon) with robust entanglement against loss of one photon, we utilize effects of optical nonlinearities in XKNLs (as quantum controlled operations) and QD-cavity system (as a parity operation) with linearly optical devices. In our scheme, the nonlinear (XKNL) gate consists of weak XKNLs, quantum bus beams, and photon-number-resolving measurement to realize controlled-unitary gate between two photons while another nonlinear (QD) gate employs interactions of photons and an electron of QD confined within a single-sided optical cavity for implementation of parity gate. Subsequently, for the efficiency and experimental feasibility of our scheme generating W state, we analyze the immunity of the controlled-unitary gate using XKNLs against decoherence effect and reliable performance of parity gate using QD-cavity system.

3.
Sci Rep ; 8(1): 13843, 2018 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-30218095

RESUMO

We present a scheme to encode quantum information (single logical qubit information) into three-photon decoherence-free states, which can conserve quantum information from collective decoherence, via nonlinearly optical gates (using cross-Kerr nonlinearities: XKNLs) and linearly optical devices. For the preparation of the decoherence-free state, the nonlinearly optical gates (multi-photon gates) consist of weak XKNLs, quantum bus (qubus) beams, and photon-number-resolving (PNR) measurement. Then, by using a linearly optical device, quantum information can be encoded on three-photon decoherence-free state prepared. Subsequently, by our analysis, we show that the nonlinearly optical gates using XKNLs, qubus beams, and PNR measurement are robust against the decoherence effect (photon loss and dephasing) in optical fibers. Consequently, our scheme can be experimentally implemented to efficiently generate three-photon decoherence-free state encoded quantum information, in practice.

4.
Sci Rep ; 7(1): 14905, 2017 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-29097727

RESUMO

We propose a controlled quantum teleportation scheme to teleport an unknown state based on the interactions between flying photons and quantum dots (QDs) confined within single- and double-sided cavities. In our scheme, users (Alice and Bob) can teleport the unknown state through a secure entanglement channel under the control and distribution of an arbitrator (Trent). For construction of the entanglement channel, Trent utilizes the interactions between two photons and the QD-cavity system, which consists of a charged QD (negatively charged exciton) inside a single-sided cavity. Subsequently, Alice can teleport the unknown state of the electron spin in a QD inside a double-sided cavity to Bob's electron spin in a QD inside a single-sided cavity assisted by the channel information from Trent. Furthermore, our scheme using QD-cavity systems is feasible with high fidelity, and can be experimentally realized with current technologies.

5.
Sci Rep ; 7(1): 10208, 2017 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-28860529

RESUMO

We design schemes to generate and distribute hybrid entanglement and hyperentanglement correlated with degrees of freedom (polarization and time-bin) via weak cross-Kerr nonlinearities (XKNLs) and linear optical devices (including time-bin encoders). In our scheme, the multi-photon gates (which consist of XKNLs, quantum bus [qubus] beams, and photon-number-resolving [PNR] measurement) with time-bin encoders can generate hyperentanglement or hybrid entanglement. And we can also purify the entangled state (polarization) of two photons using only linear optical devices and time-bin encoders under a noisy (bit-flip) channel. Subsequently, through local operations (using a multi-photon gate via XKNLs) and classical communications, it is possible to generate a four-qubit hybrid entangled state (polarization and time-bin). Finally, we discuss how the multi-photon gate using XKNLs, qubus beams, and PNR measurement can be reliably performed under the decoherence effect.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...