Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(26): 34167-34180, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38896470

RESUMO

Recently emerged lead halide perovskite CsPbX3 (X = Cl, Br, and I) nanocrystals (PNCs) have attracted tremendous attention due to their excellent optical properties. However, the poor water stability, unsatisfactory luminescence efficiency, disappointing lead leakage, and toxicity have restricted their practical applications in photoelectronics and biomedical fields. Herein, a controllable encapsulated strategy is investigated to realize CsPbX3 PNCs/PVP @PMMA composites with superior luminescence properties and excellent biocompatibility. Additionally, the synthesized CsPbBr3 and CsPbBr0.6I2.4 PNCs/PVP@PMMA structures exhibit green and red emissions with a maximal photoluminescence quantum yield (PLQY) of about 70.24% and 98.26%, respectively. These CsPbX3 PNCs/PVP@PMMA structures show high emission efficiency, excellent stability after water storage for 18 months, and low cytotoxicity at the PNC concentration at 500 µg mL-1. Moreover, white light-emitting diode (WLED) devices based on mixtures of CsPbBr3 and CsPbBr0.6I2.4 PNCs/PVP@PMMA perovskite structures are investigated, which exhibit excellent warm-white light emissions at room temperature. A flexible manipulation method is used to fabricate the white light emitters based on these perovskite composites, providing a fantastic platform for fabricating solid-state white light sources and full-color displays.

2.
ACS Appl Mater Interfaces ; 12(7): 8886-8896, 2020 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-31971777

RESUMO

Metallic multilayered nanofilms have been extensively studied owing to their unique physical properties and applications. However, studies on the thermal conductivity and electrical resistivity of metallic multilayered nanofilms, as their important physical properties, are seldom reported. In this work, Cu/W multilayered nanofilms with periodic thickness varying from 6 to 150 nm were deposited by magnetron sputtering. The resistivities of the Cu/W multilayered nanofilms increase with the decrease of periodic thickness, especially when the periodic thickness is smaller than 37 nm. The resistivities of the multilayered nanofilms fit well with the Fuchs-Sondheimer and Mayadas-Shatzkes (FS-MS) model, which considers both interface scattering and grain boundary scattering. The thermal conductivities of the Cu/W multilayered nanofilms were measured by the three-omega (3ω) method, which decrease with a decrease of periodic thickness initially and increase at the smallest periodic thickness of 6 nm. The Boltzmann transport equation (BTE)-based model was used, to explain the periodic thickness-dependent thermal conductivity of metallic multilayered nanofilms by considering the contributions from both phonon and electron heat transport processes, where the calculated thermal conductivities agree well with the measured ones. The electrical resistivity and thermal conductivity strongly depend on the microstructures of the multilayered nanofilms.

3.
Materials (Basel) ; 12(17)2019 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-31438471

RESUMO

Developing high-radiation-tolerant inert matrix fuel (IMF) with a long lifetime is important for advanced fission nuclear systems. In this work, we combined zirconia (ZrO2) with magnesia (MgO) to form ultrafine-grained ZrO2-MgO composite ceramics. On the one hand, the formation of phase interfaces can stabilize the structure of ZrO2 as well as inhibiting excessive coarsening of grains. On the other hand, the grain refinement of the composite ceramics can increase the defect sinks. Two kinds of composite ceramics with different grain sizes were prepared by spark plasma sintering (SPS), and their radiation damage behaviors were evaluated by helium (He) and xenon (Xe) ion irradiation. It was found that these dual-phase composite ceramics had better radiation tolerance than the pure yttria-stabilized ZrO2 (YSZ) and MgO. Regarding He+ ion irradiation with low displacement damage, the ZrO2-MgO composite ceramic with smaller grain size had a better ability to manage He bubbles than the composite ceramic with larger grain size. However, the ZrO2-MgO composite ceramic with a larger grain size could withstand higher displacement damage in the phase transformation under heavy ion irradiation. Therefore, the balance in managing He bubbles and phase stability should be considered in choosing suitable grain sizes.

4.
ACS Appl Mater Interfaces ; 6(2): 1113-24, 2014 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-24369679

RESUMO

Our study reports a novel iron oxide/noble metal/semiconductor ternary multilayer hybrid structure that was synthesized through template synthesis and layer-by-layer deposition. Three different morphologies of α-Fe2O3/Ag/SiO2/SnO2 hybrid architectures were obtained with different thicknesses of the SiO2 interlayer which was introduced for tailoring and controlling the coupling of noble metal Ag nanoparticles (NPs) with the SnO2 semiconductor. The resulting samples were characterized in terms of morphology, composition, and optical property by various analytical techniques. The as-obtained α-Fe2O3/Ag/SiO2/SnO2 nanocomposites exhibit enhanced visible light or UV photocatalytic abilities, remarkably superior to commercial pure SnO2 products, bare α-Fe2O3 seeds, and α-Fe2O3/SnO2 nanocomposites. Moreover, the sample of α-Fe2O3/Ag/SiO2/SnO2 also exhibits good chemical stability and recyclability because it has higher photocatalytic activity even after eight cycles. The origin of enhanced photocatalytic activity on the multilayer core-shell α-Fe2O3/Ag/SiO2/SnO2 nanocomposites was primarily ascribed to the coupling between noble metal Ag and the two semiconductors Fe2O3 and SnO2, which are proven to be applied in recyclable photocatalysis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...