Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 13(12)2021 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-34201327

RESUMO

The meniscus has poor intrinsic regenerative capability, and its injury inevitably leads to articular cartilage degeneration. Although there are commercialized off-the-shelf alternatives to achieve total meniscus regeneration, each has its own shortcomings such as individualized size matching issues and inappropriate mechanical properties. We manufactured a polycaprolactone-based patient-specific designed framework via a Computed Tomography scan images and 3D-printing technique. Then, we completed the hybrid-scaffold by combining the 3D-printed framework and mixture micro-size composite which consists of polycaprolactone and sodium chloride to create a cell-friendly microenvironment. Based on this hybrid-scaffold with an autograft cell source (fibrochondrocyte), we assessed mechanical and histological results using the rabbit total meniscectomy model. At postoperative 12-week, hybrid-scaffold achieved neo-meniscus tissue formation, and its shape was maintained without rupture or break away from the knee joint. Histological and immunohistochemical analysis results showed obvious ingrowth of the fibroblast-like cells and chondrocyte cells as well as mature lacunae that were embedded in the extracellular matrix. Hybrid-scaffolding resulted in superior shape matching as compared to original meniscus tissue. Histological analysis showed evidence of extensive neo-meniscus cell ingrowth. Additionally, the hybrid-scaffold did not induce osteoarthritis on the femoral condyle surface. The 3D-printed hybrid-scaffold may provide a promising approach that can be applied to those who received total meniscal resection, using patient-specific design and autogenous cell source.

2.
Polymers (Basel) ; 12(10)2020 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-32992820

RESUMO

Among 3D-printed composite scaffolds for bone tissue engineering, researchers have been attracted to the use of zinc ions to improve the scaffold's anti-bacterial activity and prevent surgical site infection. In this study, we assumed that the concentration of zinc ions released from the scaffold will be correlated with the thickness of the zinc oxide coating on 3D-printed scaffolds. We investigated the adequate thickness of zinc oxide coating by comparing different scaffolds' characteristics, antibacterial activity, and in vitro cell response. The scaffolds' compressive modulus decreased as the zinc oxide coating thickness increased (10, 100 and 200 nm). However, the compressive modulus of scaffolds in this study were superior to those of other reported scaffolds because our scaffolds had a kagome structure and were made of composite material. In regard to the antibacterial activity and in vitro cell response, the in vitro cell proliferation on scaffolds with a zinc oxide coating was higher than that of the control scaffold. Moreover, the antibacterial activity of scaffolds with 100 or 200 nm-thick zinc oxide coating on Escherichia coli was superior to that of other scaffolds. Therefore, we concluded that the scaffold with a 100 nm-thick zinc oxide coating was the most appropriate scaffold to use as a bone-regenerating scaffold, given its mechanical property, its antibacterial activity, and its in vitro cell proliferation.

3.
Orthop Surg ; 12(1): 312-320, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31802633

RESUMO

OBJECTIVES: To elaborate on the relationship between degeneration grade and autophagy expression in human nucleus pulposus obtained from surgical procedures. METHODS: For the 16 patients included in the present study, we determined the Pfirrmann classifications of degenerative lesions by MRI. Western blot analysis, LC3, LAMP2, and p62 protein expressions were quantified in different degeneration grades of disc nucleus pulposus. Double immunofluorescence staining was used to show co-localization of LC3 and LAMP2, and immunohistochemistry to show LC3 and p62 in the nucleus pulposus. RESULTS: In the western blot analysis, LC3-II was highly expressed in grade III and decreased progressively from grade IV to V. In addition, LC3-II expression in grade III was significantly higher than in grade II, IV, and V (P < 0.05). LAMP2 expression in grade V was significantly higher than that in grade II, III, and IV (P < 0.05). P62 increased with decreasing autophagy expression up through grade V. In the double staining, the LC3 level was highly expressed in grade III and decreased progressively from grades IV to V, as in the western blot analysis. LAMP2 rose with increasing disc degeneration grade through grade V. In the quantitative analysis of colocalization, grade III is significantly higher than grade II and V (P < 0.05). Immunohistochemical staining showed that LC3 was highly expressed in grade III but weakly expressed in other grades, with few positive areas around the nucleus pulposus. However, p62 increased progressively with increasing disc degeneration grade. CONCLUSION: Pfirrmann grade III disc degeneration showed that autophagosomes were formed, which led to the reversible decomposition of degenerative substances. Thus, by analyzing the effect of autophagy on degenerative discs, we showed the possibility of reversing degenerative changes, but only in grades III and lower.


Assuntos
Autofagia , Degeneração do Disco Intervertebral/metabolismo , Degeneração do Disco Intervertebral/patologia , Núcleo Pulposo/metabolismo , Núcleo Pulposo/patologia , Idoso , Western Blotting , Feminino , Humanos , Proteína 2 de Membrana Associada ao Lisossomo/metabolismo , Masculino , Proteínas Associadas aos Microtúbulos/metabolismo , Pessoa de Meia-Idade , Proteínas de Ligação a RNA/metabolismo
4.
J Biomed Mater Res A ; 105(12): 3432-3444, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28879670

RESUMO

Salt-leaching using powder (SLUP) scaffolds are novel salt-leaching scaffolds with well-interconnected pores that do not require an organic solvent or high pressure. In this study, in vitro and in vivo cell behaviors were assessed using a PCL (polycaprolactone) SLUP scaffold. Moreover, using PCL, conventional salt-leaching and 3D-plotted scaffolds were fabricated as control scaffolds. Morphology, mechanical property, water absorption, and in vitro/in vivo cell response assessments were performed to clarify the characteristics of the SLUP scaffold compared with control scaffolds. Consequently, we verified that the interconnectivity between the pores of the SLUP scaffold was enhanced compared with conventional salt-leaching scaffolds. Moreover, in vitro cell attachment and proliferation of the SLUP scaffold were higher than those of the 3D-plotted scaffold because of their morphological characteristic. Furthermore, we revealed that new bone formation and bone ingrowth of the SLUP scaffold was superior to those of the calvarial defect model and 3D-plotted scaffold because of the high porosity and improved interconnectivity of pores by the SLUP technique without high pressure using powders. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 3432-3444, 2017.


Assuntos
Regeneração Óssea , Poliésteres/química , Sais/administração & dosagem , Alicerces Teciduais/química , Animais , Adesão Celular , Proliferação de Células , Células Cultivadas , Teste de Materiais , Osteoblastos/citologia , Porosidade , Pós , Impressão Tridimensional , Ratos Sprague-Dawley , Crânio/lesões , Crânio/fisiologia , Engenharia Tecidual
5.
Biomed Mater ; 12(5): 055003, 2017 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-28762959

RESUMO

To enhance the mechanical properties of three-dimensional (3D) scaffolds used for bone regeneration in tissue engineering, many researchers have studied their structure and chemistry. In the structural engineering field, the kagome structure has been known to have an excellent relative strength. In this study, to enhance the mechanical properties of a synthetic polymer scaffold used for tissue engineering, we applied the 3D kagome structure to a porous scaffold for bone regeneration. Prior to fabricating the biocompatible-polymer scaffold, the ideal kagome structure, which was manufactured by a 3D printer of the digital light processing type, was compared with a grid-structure, which was used as the control group, using a compressive experiment. A polycaprolactone (PCL) kagome-structure scaffold was successfully fabricated by additive manufacturing using a 3D printer with a precision extruding deposition head. To assess the physical characteristics of the fabricated PCL-kagome-structure scaffold, we analyzed its porosity, pore size, morphological structure, surface roughness, compressive stiffness, and mechanical bending properties. The results showed that, the mechanical properties of proposed kagome-structure scaffold were superior to those of a grid-structure scaffold. Moreover, Sarcoma osteogenic (Saos-2) cells were used to evaluate the characteristics of in vitro cell proliferation. We carried out cell counting kit-8 (CCK-8) and DNA contents assays. Consequently, the cell proliferation of the kagome-structure scaffold was increased; this could be because the surface roughness of the kagome-structure scaffold enhances initial cell attachment.


Assuntos
Técnicas de Cultura de Células , Poliésteres/química , Engenharia Tecidual , Alicerces Teciduais/química , Regeneração Óssea , Adesão Celular , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular , DNA/química , Humanos , Teste de Materiais , Polímeros/química , Porosidade , Impressão Tridimensional , Estresse Mecânico , Propriedades de Superfície
6.
J Biomed Mater Res B Appl Biomater ; 105(8): 2315-2325, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27504613

RESUMO

In this study, the fabrication method was proposed for the well-interconnected polycaprolactone/hydroxyapatite composite scaffold with exposed hydroxyapatite using modified WNM technique. To characterize well-interconnected scaffolds in terms of hydroxyapatite exposure, several assessments were performed as follows: morphology, mechanical property, wettability, calcium ion release, and cell response assessments. The results of these assessments were compared with those of control scaffolds which were fabricated by precision extruding deposition (PED) apparatus. The control PED scaffolds have interconnected pores with nonexposed hydroxyapatite. Consequently, cell attachment of proposed WNM scaffold was improved by increased hydrophilicity and surface roughness of scaffold surface resulting from the exposure of hydroxyapatite particles and fabrication process using powders. Moreover, cell proliferation and differentiation of WNM scaffold were increased, because the exposure of hydroxyapatite particles may enhance cell adhesion and calcium ion release. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 2315-2325, 2017.


Assuntos
Proliferação de Células , Durapatita/química , Teste de Materiais , Poliésteres/química , Alicerces Teciduais/química , Adesão Celular , Linhagem Celular , Humanos
7.
Mater Sci Eng C Mater Biol Appl ; 45: 546-55, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25491863

RESUMO

In this study, a novel technique was proposed to fabricate dual-pore scaffolds combining both SLUP (salt leaching using powder) and WNM (wire-network molding) techniques. This technique has several advantages: solvent-free, no limit on the use of thermoplastic polymers as a raw material, and easiness of fabricating scaffolds with dual-scale pores that are interconnected randomized small pores. To fabricate dual-pore scaffolds, PCL and NaCl powders were mixed at a certain ratio. Subsequently, needles were inserted into a designed mold, and the mixture was filled into the mold thereafter. Subsequently, after the mold was pressurized, the mold was heated to melt the PCL powders. The PCL/NaCl structure and needles were separated from the mold. The structure was sonicated to leach-out the NaCl particles and was dried. Consequently, the remaining PCL structure became the dual-pore scaffold. To compare the characteristics of dual-pore scaffolds, control scaffolds, which are 3D plotter and SLUP scaffolds were fabricated.


Assuntos
Materiais Biocompatíveis/química , Polímeros/química , Alicerces Teciduais , Materiais Biocompatíveis/farmacologia , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Força Compressiva , Humanos , Microscopia Eletrônica de Varredura , Poliésteres/química , Polímeros/farmacologia , Porosidade , Cloreto de Sódio/química , Propriedades de Superfície , Engenharia Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...