Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 2020 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-33211482

RESUMO

This study presents an important and efficient synthetic approach to 5,8-dibromo-2,11-di-tert-butylpicene (3), with multigram scale, which was then converted to a new series of picenophanes (6-10). The tub-shaped [2,2](5,8)picenophanediene 8 with two cis-ethylene linkers was explored using X-ray crystallography. The tub-to-tub inversion proceed through the successive bending of the linkers and the barrier for isopropyl-substituted derivative 10 was experimentally estimated to be 18.7 kcal/mol. Picenophanes with a large π-system and semi-rigid structure exhibited anomalous photophysical properties. The ethano-bridged picenophane shows the weak exciton delocalization while the cis-ethylene-bridged picenophane exhibits dual emission rendered by the weakly delocalized exciton and excimer. With the aid of the ultrafast time-resolved emission spectroscopy, the mechanism of the excimer formation is resolved, showing a unique behavior of two-state reversible reaction with fast structural deformation whose lifetime is around 20 ps at 298 K. This work demonstrates that the slight difference in the bridge of tub-shaped picenophanes renders distinct photophysical behavior, revealing the potential of harnessing inter-moiety reaction in the picenophane systems.

2.
J Am Chem Soc ; 141(50): 19941-19949, 2019 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-31756095

RESUMO

We report herein the first catalytic strategy to harness amidyl radicals derived from N-chloroamides for C-C bond formation, allowing for the discovery of the first catalytic benzylic C-H difluoromethylation. Under copper-catalyzed conditions, a wide variety of N-chlorocarboxamides and N-chlorocarbamates direct selective benzylic C-H difluoromethylation with a nucleophilic difluoromethyl source at room temperature. This scalable protocol exhibits a broad substrate scope and functional group tolerance, enabling late-stage difluoromethylation of bioactive molecules. This copper-catalyzed, chloroamide-directed strategy has also been extended to benzylic C-H pentafluoroethylation and trifluoromethylation. Mechanistic studies on the difluoromethylation reactions support that the reactions involve the formation of benzylic radicals via intramolecular C-H activation, followed by the copper-mediated transfer of difluoromethyl groups to the benzylic radicals.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...