Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Stem Cell ; 30(2): 171-187.e14, 2023 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-36736291

RESUMO

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease caused by many diverse genetic etiologies. Although therapeutics that specifically target causal mutations may rescue individual types of ALS, such approaches cannot treat most patients since they have unknown genetic etiology. Thus, there is a critical need for therapeutic strategies that rescue multiple forms of ALS. Here, we combine phenotypic chemical screening on a diverse cohort of ALS patient-derived neurons with bioinformatic analysis of large chemical and genetic perturbational datasets to identify broadly effective genetic targets for ALS. We show that suppressing the gene-encoding, spliceosome-associated factor SYF2 alleviates TDP-43 aggregation and mislocalization, improves TDP-43 activity, and rescues C9ORF72 and causes sporadic ALS neuron survival. Moreover, Syf2 suppression ameliorates neurodegeneration, neuromuscular junction loss, and motor dysfunction in TDP-43 mice. Thus, suppression of spliceosome-associated factors such as SYF2 may be a broadly effective therapeutic approach for ALS.


Assuntos
Esclerose Lateral Amiotrófica , Doenças Neurodegenerativas , Camundongos , Animais , Esclerose Lateral Amiotrófica/genética , Neurônios Motores , Mutação , Proteínas de Ligação a DNA/genética
2.
Cell ; 186(4): 786-802.e28, 2023 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-36754049

RESUMO

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease that results from many diverse genetic causes. Although therapeutics specifically targeting known causal mutations may rescue individual types of ALS, these approaches cannot treat most cases since they have unknown genetic etiology. Thus, there is a pressing need for therapeutic strategies that rescue multiple forms of ALS. Here, we show that pharmacological inhibition of PIKFYVE kinase activates an unconventional protein clearance mechanism involving exocytosis of aggregation-prone proteins. Reducing PIKFYVE activity ameliorates ALS pathology and extends survival of animal models and patient-derived motor neurons representing diverse forms of ALS including C9ORF72, TARDBP, FUS, and sporadic. These findings highlight a potential approach for mitigating ALS pathogenesis that does not require stimulating macroautophagy or the ubiquitin-proteosome system.


Assuntos
Esclerose Lateral Amiotrófica , Fosfatidilinositol 3-Quinases , Animais , Esclerose Lateral Amiotrófica/tratamento farmacológico , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Neurônios Motores , Mutação , Proteína FUS de Ligação a RNA/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Modelos Animais de Doenças
3.
Bioengineering (Basel) ; 10(2)2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36829757

RESUMO

Recent progress in cortical stem cell transplantation has demonstrated its potential to repair the brain. However, current transplant models have yet to demonstrate that the circuitry of transplant-derived neurons can encode useful function to the host. This is likely due to missing cell types within the grafts, abnormal proportions of cell types, abnormal cytoarchitecture, and inefficient vascularization. Here, we devised a transplant platform for testing neocortical tissue prototypes. Dissociated mouse embryonic telencephalic cells in a liquid scaffold were transplanted into aspiration-lesioned adult mouse cortices. The donor neuronal precursors differentiated into upper and deep layer neurons that exhibited synaptic puncta, projected outside of the graft to appropriate brain areas, became electrophysiologically active within one month post-transplant, and responded to visual stimuli. Interneurons and oligodendrocytes were present at normal densities in grafts. Grafts became fully vascularized by one week post-transplant and vessels in grafts were perfused with blood. With this paradigm, we could also organize cells into layers. Overall, we have provided proof of a concept for an in vivo platform that can be used for developing and testing neocortical-like tissue prototypes.

4.
Microorganisms ; 10(2)2022 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-35208819

RESUMO

Due to the increasing health and environmental risks associated with the use of fungicides in agriculture, alternatives-such as using plant growth-promoting bacteria (PGPB) to suppress phytopathogens-that simultaneously improve plant yield, are important. This study evaluated the biocontrol efficiency of Bacillus velezensis CE100 against Macrophomina phaseolina and Fusarium oxysporum f. sp. fragariae, the respective causal agents for charcoal rot and fusarium wilt diseases in strawberry, and its potential to enhance strawberry growth and fruit production. B. velezensis CE 100 produced fungal cell wall-degrading enzymes, chitinases, and ß-1,3-glucanases; and inhibited the mycelial growth of M. phaseolina and F. oxysporum f. sp. fragariae by 64.7% and 55.2%, respectively. The mycelia of both phytopathogenic fungi showed severe swelling and rupturing of the hyphae compared to the smooth, normal growth in the control group. Moreover, B. velezensis CE100 produced up to 2.8 units/mL of indole-3-acetic acid (IAA) during incubation and enhanced root biomass in strawberries. Consequently, B. velezensis CE 100 not only increased the fruit yield of strawberries by controlling the fungal diseases but also through enhancing plant growth. The findings of this study indicate that B. velezensis CE100 could be a safe, ecofriendly biocontrol alternative to chemical fungicides in strawberry production.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...