Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 15(11)2022 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-35683037

RESUMO

Governing void growth, stress triaxiality (η) is a crucial parameter in ductile damage prediction. η is defined as the ratio of mean stress to equivalent stress and represents loading conditions. Attempts at introducing material anisotropy in ductile damage models have started only recently, rendering necessary in-depth investigation into the role of η here. η is commonly derived via finite elemnt (FE) simulation. An alternative is presented here: based on analytical expressions, η is obtained directly from the strains in the critical zone. For anisotropic materials, η associated with a specimen varies with yield criterion and material (anisotropy). To investigate the meaning of triaxiality for anisotropic materials, metal sheets made of dual phase steel DP780, and zirconium alloy Zirlo are chosen. Analytical expressions for η are derived for three popular yield criteria: von Mises, Hill48 and Barlat89. Tensile tests are performed with uniaxial tension, notch, and shear specimens, and the local principal strains, measured via digital image correlation (DIC), are converted to h. The uniaxial tension case reveals that only the anisotropic yield criteria can predict the expected η = 1/3. The ramifications associated with anisotropy become apparent for notched specimens, where η differences are highest; for shear specimens, the yield criterion and material-dependence is relatively moderate. This necessitates η and, consequently, the triaxiality failure diagram (TFD) being accompanied by the underlying yield criterion and anisotropy parameters. As the TFD becomes difficult to interpret, it seems more advantageous to provide pairs of principal strain ratio ß and failure strain. Suggestions for deriving representative ß and η are made.

2.
Materials (Basel) ; 15(5)2022 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-35269128

RESUMO

Transport containers for radioactive materials should withstand drop tests according to the regulations. In order to prevent a loss or dispersal of the internal radioactive materials in the drop tests, a tightening of the lid of the transport container should be maintained. The opening of the lid, due to the drop impact, might cause the dispersion of internal contents or a loss of shielding performance. Thus, it is crucial to predict damage to the fastening bolt and its fracture. In this study, the damage parameters of the fastening bolt were acquired, and its fracture was predicted using the generalized incremental stress state-dependent damage model (GISSMO), a phenomenological damage model. Since the dedicated transport container is large and heavy, various jigs that can simulate the fall of the container were designed, and the accuracy of fracture prediction was verified. Digital image correlation (DIC) was introduced for the accurate measurement of the displacement, and load-displacement data for tensile, shear, and combined loads were successfully acquired. Finally, the load-displacement curve of the finite element analysis (FEA) with GISSMO until the point of the bolt fracture was compared with the curve obtained from the experiment, where a good agreement was observed.

3.
Sensors (Basel) ; 21(12)2021 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-34205784

RESUMO

In this study, an acoustic emission (AE) sensor was utilized to predict fractures that occur in a product during the sheet metal forming process. An AE activity was analyzed, presuming that AE occurs when plastic deformation and fracturing of metallic materials occur. For the analysis, a threshold voltage is set to distinguish the AE signal from the ripple voltage signal and noise. If the amplitude of the AE signal is small, it is difficult to distinguish the AE signal from the ripple voltage signal and the noise signal. Hence, there is a limitation in predicting fractures using the AE sensor. To overcome this limitation, the Kalman filter was used in this study to remove the ripple voltage signal and noise signal and then analyze the activity. However, it was difficult to filter out the ripple voltage signal using a conventional low-pass filter or Kalman filter because the ripple voltage signal is a high-frequency component governed by the switch-mode of the power supply. Therefore, a Kalman filter that has a low Kalman gain was designed to extract only the ripple voltage signal. Based on the KF-RV algorithm, the measured ripple voltage and noise signal were reduced by 97.3% on average. Subsequently, the AE signal was extracted appropriately using the difference between the measured value and the extracted ripple voltage signal. The activity of the extracted AE signal was analyzed using the ring-down count among various AE parameters to determine if there was a fracture in the test specimen.


Assuntos
Acústica , Ruído , Algoritmos
4.
Materials (Basel) ; 13(24)2020 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-33339264

RESUMO

In this study, the experimental two-dimensional forming limit diagram (FLD) data for a ZIRLO™ sheet, which is used in nuclear fuel rod support grids, were converted and presented as a triaxiality failure diagram (TFD). Most previous studies assumed ZIRLO™ to be isotropic when calculating the effective stress and strain. However, for highly anisotropic materials, the anisotropy should be considered for calculations of effective stress and strain; hence, in this study, they were calculated by introducing the normal anisotropy coefficient. To obtain this parameter of the ZIRLO™ specimens, tensile tests were performed on specimens with 0°, 45°, and 90° angles with respect to the rolling direction. It was observed that the average normal anisotropy coefficient measured during the tests was 4.94, which is very high. The von Mises isotropic and Hill 48 anisotropic yield criterion were applied to the FLD data that were experimentally determined using a limit dome height test and were converted into effective stress and effective strain. When the FLD is converted to TFD, the curve will increase in the top-right direction if the r-value is greater than 1, and this become more severe as the r-value increases. The TFD, which was converted considering the anisotropy, is almost the same to the TFD obtained using the digital image correlation method in the tensile tests of four specimens with different stress states. If anisotropy is not considered, then the formability is normally underestimated. However, a highly accurate TFD can be obtained with the method proposed in this study.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...