Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genes Genomics ; 46(3): 279-287, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38291311

RESUMO

BACKGROUND: Spermatogenesis is a tightly organized process that utilizes an intrinsic genetic program composed of germ cell-specific genes. Although mouse germ cell-related cell lines are available, few germ cell-specific genes have been comprehensively identified in such cell lines. OBJECTIVE: We aimed to profile gene expression in the male mouse germ cell-related cell lines, GC-1 and GC-2, characterize their transcriptomic nature, and identify potential testis- or germ cell-specific or -predominant genes expressed in these cell lines. METHODS: We performed profiling analysis of genes transcribed in the mouse germ cell-related cell lines, GC-1 and GC-2, using our previous microarray data together with public transcriptome information. We analyzed the expression of a number of the cell line genes predicted to be preferentially expressed in testis by RT-PCR. RESULTS: We found that most testis-specific or -predominant mRNAs are not expressed in GC-1 and GC-2 cells, implying that these cell lines have lost their testis- or germ cell-specific genetic characteristics. RT-PCR analysis of genes predicted to be expressed in the cell lines with preferential testicular expression showed the testis-specific or -predominant expression of nine genes and verified four of them as being expressed in the germ cell lines. Among them, only cyclin-dependent kinase inhibitor 3 genes (Cdkn3) showed testis and germ cell specificity. CONCLUSION: Our study provides extensive transcriptomic information to shed light on the limited testicular characteristics of the mouse male germ cell-derived cell lines, GC-1 and GC-2, and offers a list of germ cell line genes with testicular preference.


Assuntos
Acetatos , Fenóis , Espermatogênese , Testículo , Camundongos , Animais , Masculino , Testículo/metabolismo , Espermatogênese/genética , Perfilação da Expressão Gênica , Linhagem Celular
2.
Small Methods ; 8(3): e2301294, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37988680

RESUMO

Graphitic carbon-coated ZnPS3 is prepared via direct phosphosulfurization and high energy mechanical milling (HEMM) with multiwall carbon nanotubes (MWCNTs) and first introduced as an anode for lithium-ion batteries (LIBs) and sodium-ion batteries (SIBs). The HEMM process with MWCNTs reduces the particle size of as-synthesized ZnPS3 bulk to 100-500 nm and yields the ≈5 nm thick graphitic carbon coated ZnPS3 nanoparticles, which are the nanocomposites of 5 nm sized nanocrystallites embedded in the amorphous matrix. The ZnPS3 electrode undergoes the combined conversion and alloying reactions with Li and Na ions and exhibits high initial discharge and charge capacities in both LIBs and SIBs. The graphitic carbon-coated ZnPS3 electrode exhibits excellent high-rate capability and long-term cyclability. The superior electrochemical properties can be attributed to high electrical conductivity, high Li ion mobility, and high reversibility and structural stability derived from the graphitic carbon-coated nanoparticles. This study demonstrates that the novel graphitic carbon-coated ZnPS3 is a promising anode material for both LIBs and SIBs and the graphitic carbon coating methodology by HEMM is expected to apply to the various metal oxides, sulfides, and phosphides.

3.
Nanoscale ; 14(23): 8281-8290, 2022 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-35583399

RESUMO

The electrocatalytic water splitting activity of V-based oxides has been rarely investigated, even though several polymorphs in VO2 are expected to exhibit different electrocatalytic activities depending on their crystal and electronic structures. The rutile structure of VO2(R), showing metallic character, is a good candidate for a new electrocatalyst since it undergoes insulator-to-metal transition (IMT) from the insulating VO2(M1) at a low temperature of 68 °C, and involves a substantially increased electrical conductivity by three orders of magnitude. The extensive improvements in the electrocatalytic activity for both the oxygen evolution reaction (OER) and the hydrogen evolution reaction (HER) are confirmed when the IMT is induced where the overpotential (η10) is reduced from 1056 mV to 598 mV in the OER and 411 mV to 136 mV in the HER, respectively. This improvement is attributed to the increased electrochemically active surface area (ECSA), reduced charge transfer resistance, and increased electron density, driven by the IMT to the metallic VO2(R) phase.

4.
Small ; 18(12): e2106613, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35060312

RESUMO

In the pandemic era, the development of high-performance indoor air quality monitoring sensors has become more critical than ever. NO2 is one of the most toxic gases in daily life, which induces severe respiratory diseases. Thus, the real-time monitoring of low concentrations of NO2 is highly required. Herein, a visible light-driven ultrasensitive and selective chemoresistive NO2 sensor is presented based on sulfur-doped SnO2 nanoparticles. Sulfur-doped SnO2 nanoparticles are synthesized by incorporating l-cysteine as a sulfur doping agent, which also increases the surface area. The cationic and anionic doping of sulfur induces the formation of intermediate states in the band gap, highly contributing to the substantial enhancement of gas sensing performance under visible light illumination. Extraordinary gas sensing performances such as the gas response of 418 to 5 ppm of NO2 and a detection limit of 0.9 ppt are achieved under blue light illumination. Even under red light illumination, sulfur-doped SnO2 nanoparticles exhibit stable gas sensing. The endurance to humidity and long-term stability of the sensor are outstanding, which amplify the capability as an indoor air quality monitoring sensor. Overall, this study suggests an innovative strategy for developing the next generation of electronic noses.


Assuntos
Cisteína , Nanopartículas , Luz , Dióxido de Nitrogênio , Enxofre , Compostos de Estanho
5.
Cells ; 10(11)2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34831115

RESUMO

Male reproductive aging, or andropause, is associated with gradual age-related changes in testicular properties, sperm production, and erectile function. The testis, which is the primary male reproductive organ, produces sperm and androgens. To understand the transcriptional changes underlying male reproductive aging, we performed transcriptome analysis of aging testes in mice. A total of 31,386 mRNAs and 9387 long non-coding RNAs (lncRNAs) were identified in the mouse testes of diverse age groups (3, 6, 12, and 18 months old) by total RNA sequencing. Of them, 1571 mRNAs and 715 lncRNAs exhibited changes in their levels during testicular aging. Most of these aging-related transcripts exhibited slight and continuous expression changes during aging, whereas some (9.6%) showed larger expression changes. The aging-related transcripts could be classified into diverse expression patterns, in which the transcripts changed mainly at 3-6 months or at 12-18 months. Our subsequent in silico analysis provided insight into the potential features of testicular aging-related mRNAs and lncRNAs. We identified testis-specific aging-related transcripts (121 mRNAs and 25 lncRNAs) by comparison with a known testis-specific transcript profile, and then predicted the potential reproduction-related functions of the mRNAs. By selecting transcripts that are altered only between 3 and 18 months, we identified 46 mRNAs and 34 lncRNAs that are stringently related to the terminal stage of male reproductive aging. Some of these mRNAs were related to hormonal regulation. Finally, our in silico analysis of the 34 aging-related lncRNAs revealed that they co-localized with 19 testis-expressed protein-coding genes, 13 of which are considered to show testis-specific or -predominant expression. These nearby genes could be potential targets of cis-regulation by the aging-related lncRNAs. Collectively, our results identify a number of testicular aging-related mRNAs and lncRNAs in mice and provide a basis for the future investigation of these transcripts in the context of aging-associated testicular dysfunction.


Assuntos
Envelhecimento/metabolismo , Perfilação da Expressão Gênica , Testículo/metabolismo , Animais , Regulação da Expressão Gênica no Desenvolvimento , Masculino , Camundongos Endogâmicos C57BL , Especificidade de Órgãos/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transcriptoma/genética
6.
Sci Adv ; 7(24)2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34108217

RESUMO

Heat shock factor 2 (HSF2) regulates the transcription of the male-specific region of the mouse Y chromosome long arm (MSYq) multicopy genes only in testes, but the molecular mechanism underlying this tissue specificity remains largely unknown. Here, we report that the testicular germ cell-specific long noncoding RNA (lncRNA), NR_038002, displays a characteristic spatiotemporal expression pattern in the nuclei of round and elongating spermatids. NR_038002-knockout male mice produced sperm with abnormal head morphology and exhibited reduced fertility accompanied by a female-biased sex ratio in offspring. Molecular analyses revealed that NR_038002 interacts with HSF2 and thereby activates expression of the MSYq genes. We designate NR_038002 as testicular germ cell-specific HSF2-interacting lncRNA (Teshl). Together, our study is the first to demonstrate that the testis specificity of HSF2 activity is regulated by the lncRNA Teshl and establishes a Teshl-HSF2-MSYq molecular axis for normal Y-bearing sperm qualities and consequent balanced offspring sex ratio.

7.
Mol Biol Rep ; 48(3): 3017-3022, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33811575

RESUMO

Mammalian spermatogenesis is a highly organized process with successive mitotic, meiotic, and postmeiotic phases. This unique developmental process is characterized by the involvement of spermatogenic cell-specific genes. In this study, we identified and investigated testis expressed gene 13 (Tex13) family genes, consisting of Tex13a, Tex13b, Tex13c1, and Tex13d, in mice. All of these genes were transcribed specifically or predominantly in male germ cells, and their transcription was developmentally regulated. Proteins encoded by the Tex13 genes were predicted to have a conserved domain of ~ 145 amino acids. Tex13a, Tex13c1, and Tex13d encode additional C-terminal regions containing a short conserved sequence termed a zinc finger-RAN binding protein 2 (zf-RanBP2) or zf-RanBP2-like domain. As TEX13B reportedly has transcriptional repressor activity, we examined the effect of the TEX13 proteins on transcriptional regulation using a reporter assay. All of the TEX13 proteins exhibited transcriptional repressor activity. This activity was revealed to reside in the TEX13B-corresponding regions of TEX13A, TEX13C1, and TEX13D. Further, we found that the C-terminal regions of TEX13A, TEX13C1, and TEX13D also have inhibitory activities. These results suggest that male germ cell-specific or -predominant TEX13 proteins commonly function in transcriptional repression as transcription cofactors and/or RNA binding proteins.


Assuntos
Células Germinativas/metabolismo , Família Multigênica , Proteínas Repressoras/metabolismo , Fatores de Transcrição/metabolismo , Animais , Simulação por Computador , Regulação da Expressão Gênica , Células HEK293 , Humanos , Masculino , Camundongos , Proteínas Repressoras/genética
8.
Biomed Microdevices ; 23(2): 20, 2021 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-33782743

RESUMO

This paper presents a framework for automated optimization of double-heater convective PCR (DH-cPCR) devices by developing a computational fluid dynamics (CFD) simulation database and artificial neural network (ANN) model. The optimization parameter space that includes the capillary tube geometries and the heater sizes of DH-cPCR is established, and a database consisting of nearly 10,000 CFD simulations is constructed. The database is then used to train a two-stage ANN models that select practically relevant data for modeling and predict PCR device performance. The trained ANN model is then combined with the gradient-based and the heuristics optimization approaches to search for optimal device configuration that possesses the shortest DNA doubling time. The entire design process including model meshing and configuration, parallel CFD computation, database organization, and ANN training and utilization is fully automated. Case studies confirm that the proposed framework can successfully find the optimal device configuration with an error of less than 0.3 s, and hence, representing a cost-effective and rapid solution of DH-cPCR device design.


Assuntos
Hidrodinâmica , Redes Neurais de Computação , Simulação por Computador , Reação em Cadeia da Polimerase
9.
Reprod Biol ; 20(4): 589-594, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32972883

RESUMO

The a disintegrin and metalloprotease (ADAM) family proteins comprise a group of membrane-anchored proteins. ADAM32 is expressed specifically in testis and is closely related phylogenetically to ADAM2 and ADAM3, which are known to be critical for fertilization in mice. To assess the biological role of ADAM32, we analyzed Adam32-mutant mice. We found that male mice lacking ADAM32 have normal fertility, testicular integrity, and sperm characteristics. ADAM32 was found to exist at lower levels than ADAM2 and ADAM3 in wild-type testis and sperm, respectively. The present study demonstrates that ADAM32 is dispensable for fertility and appears to be functionally unrelated to ADAM2 and ADAM3 in mice.


Assuntos
Proteínas ADAM/deficiência , Proteínas ADAM/fisiologia , Fertilidade/fisiologia , Expressão Gênica/fisiologia , Testículo/metabolismo , Proteínas ADAM/análise , Proteínas ADAM/genética , Animais , Cruzamento , Epididimo/anatomia & histologia , Feminino , Fertilinas/análise , Masculino , Glicoproteínas de Membrana/análise , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Motilidade dos Espermatozoides/fisiologia , Espermatozoides/química , Espermatozoides/fisiologia , Testículo/anatomia & histologia , Testículo/química
10.
Nanoscale ; 12(30): 16028-16033, 2020 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-32412036

RESUMO

A MnV2O6/graphene nanocomposite was fabricated through hydrothermal synthesis and high energy milling to introduce it as an efficient OER electrocatalyst. The MnV2O6/graphene nanocomposite with 20 wt% graphene exhibited superior electrocatalytic OER performance with a low overpotential and high stability and durability in 1 M KOH aqueous solution, exhibiting even after 1000 CV cycles.

11.
RSC Adv ; 10(23): 13799-13814, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35493014

RESUMO

This paper presents a surrogate-based optimization (SBO) method with adaptive sampling for designing microfluidic concentration gradient generators (µCGGs) to meet prescribed concentration gradients (CGs). An efficient physics-based component model (PBCM) is used to generate data for Kriging-based surrogate model construction. In a comparative analysis, various combinations of regression and correlation models in Kriging, and different adaptive sampling (infill) techniques are inspected to enhance model accuracy and optimization efficiency. The results show that the first-order polynomial regression and the Gaussian correlation models together form the most accurate model, and the lower bound (LB) infill strategy in general allows the most efficient global optimum search. The CGs generated by optimum designs match very well with prescribed CGs, and the discrepancy is less than 12% even with an inherent limitation of the µCGG. It is also found that SBO with adaptive sampling enables much more efficient and accurate design than random sampling-based surrogate modeling and optimization, and is more robust than the gradient-based optimization for searching the global optimum.

12.
Materials (Basel) ; 12(23)2019 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-31766632

RESUMO

SnSe is considered as a promising thermoelectric (TE) material since the discovery of the record figure of merit (ZT) of 2.6 at 926 K in single crystal SnSe. It is, however, difficult to use single crystal SnSe for practical applications due to the poor mechanical properties and the difficulty and cost of fabricating a single crystal. It is highly desirable to improve the properties of polycrystalline SnSe whose TE properties are still not near to that of single crystal SnSe. In this study, in order to control the TE properties of polycrystalline SnSe, polycrystalline SnSe-SnTe solid solutions were fabricated, and the effect of the solid solution on the electrical transport and TE properties was investigated. The SnSe1-xTex samples were fabricated using mechanical alloying and spark plasma sintering. X-ray diffraction (XRD) analyses revealed that the solubility limit of Te in SnSe1-xTex is somewhere between x = 0.3 and 0.5. With increasing Te content, the electrical conductivity was increased due to the increase of carrier concentration, while the lattice thermal conductivity was suppressed by the increased amount of phonon scattering. The change of carrier concentration and electrical conductivity is explained using the measured band gap energy and the calculated band structure. The change of thermal conductivity is explained using the change of lattice thermal conductivity from the increased amount of phonon scattering at the point defect sites. A ZT of ~0.78 was obtained at 823 K from SnSe0.7Te0.3, which is an ~11% improvement compared to that of SnSe.

13.
Chem Commun (Camb) ; 55(77): 11575-11578, 2019 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-31495863

RESUMO

A new P2-type Na0.7(Ni0.6Co0.2Mn0.2)O2 was prepared via co-precipitation and its electrochemical properties as a cathode for sodium ion batteries were compared with those of O3-type Na(Ni0.6Co0.2Mn0.2)O2, focusing on phase stability and cycling performance. The P2-type delivered a high capacity of 108 mA h g-1 after 300 cycles at 2C.

14.
ACS Appl Mater Interfaces ; 11(30): 26753-26763, 2019 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-31276371

RESUMO

Silicon (Si) is considered to be one of the most promising anode candidates for next-generation lithium-ion batteries because of its high theoretical specific capacity and low discharge potential. However, its poor cyclability, caused by tremendous volume change during cycling, prevents commercial use of the Si anode. Herein, we demonstrate a high-performance Si anode produced via covalent bond formation between a commercially available Si nanopowder and a linear polymeric binder through an esterification reaction. For efficient ester bonding, polyacrylic acid, composed of -COOH groups, is selected as the binder, Si is treated with piranha solution to produce abundant -OH groups on its surface, and sodium hypophosphite is employed as a catalyst. The as-fabricated electrode exhibits excellent high rate capability and long cycle stability, delivering a high capacity of 1500 mA h g-1 after 500 cycles at a high current density of 1000 mA g-1 by effectively restraining the susceptible sliding of the binder, stabilizing the solid electrolyte interface layer, preventing the electrode delamination, and suppressing the Si aggregation. Furthermore, a full cell is fabricated with as-fabricated Si as an anode and commercially available LiNi0.6Mn0.2Co0.2O2 as a cathode, and its electrochemical properties are investigated for the possibility of practical use.

15.
FASEB J ; 33(10): 11326-11337, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31322925

RESUMO

In mammals, the early embryo travels down the oviduct to the uterus and prepares for implantation. The unique features of preimplantation development include compaction followed by blastocyst formation. This first cell lineage specification involves various proteins including cell polarity regulators, kinases, and transcription factors. In this study, a novel gene named predicted gene 11545 (Gm11545) expressed predominantly in mouse early embryos was identified and characterized at the transcript, protein, cellular, and functional levels. The Gm11545 protein localized to both cytoplasmic and membrane regions of preimplantation embryos. Remarkably, knockdown of Gm11545 led to arrest of mouse embryos at the morula stage and consequent impairment of blastocyst formation. Expression patterns of the key transcription factors critical for early lineage specification, octamer-binding transcription factor 4 and caudal type homeobox 2, were affected by Gm11545 depletion. Based on the collective findings, we propose that the novel protein identified in this study, Gm11545, is implicated in cell proliferation and cell lineage specification critical for blastocyst formation.-Kim, J., Kim, J., Jeong, J., Hong, S. H., Kim, D., Choi, S., Choi, I., Oh, J. S., Cho, C. Identification of a novel embryo-prevalent gene, Gm11545, involved in preimplantation embryogenesis in mice.


Assuntos
Blastocisto/fisiologia , Implantação do Embrião/genética , Embrião de Mamíferos/fisiologia , Desenvolvimento Embrionário/genética , Fatores de Transcrição/genética , Animais , Linhagem da Célula/genética , Polaridade Celular/genética , Feminino , Regulação da Expressão Gênica no Desenvolvimento/genética , Masculino , Camundongos
16.
Nanoscale ; 11(28): 13494-13501, 2019 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-31289800

RESUMO

The substitutional solid solution Mn1-xFexP compounds between alloying reaction-type MnP and conversion reaction-type FeP are successfully synthesized via facile high energy mechanical milling and their electrochemical properties as an anode for lithium ion batteries (LIBs) are investigated. A complete solid solution is formed between two end members and the Mn1-xFexP solid solution phosphide electrodes show an enhanced electrochemical performance, delivering a capacity of 360 mA h g-1 after 100 cycles at a high current density of 2 A g-1 when the advantages of the two reaction mechanisms are beneficially combined. These synergistic effects resulted from the in situ generated nanocomposite of the Li-Mn-P alloying element and the Fe nano-network in combination with the surrounding amorphous lithium phosphide, which effectively buffers the accompanying volume variation, hinders the aggregation of the alloying element, and ensures the electron and ion transport.

17.
Nanotechnology ; 30(40): 405401, 2019 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-31252416

RESUMO

Copper deposited mesoporous silicon was fabricated by magnesiothermic reduction and electroless deposition and its electrochemical properties as an anode for lithium ion batteries were investigated. The 300-400 nm sized mesoporous Si particles were synthesized by magnesiothermic reduction of SiO2 nanospheres prepared by the Stöber method. The mesopores of Si particles were effectively decorated with Cu using Sn sensitization/Pd activation and subsequent Cu electroless deposition. The homogeneous distribution of Cu inside the mesoporous Si particles was confirmed by high resolution transmission electron microscopy images and energy dispersive spectroscopy mapping on the cross-sectional specimen prepared by a focused ion beam. The mesoporous Si-Cu nanocomposite exhibited high initial Coulombic efficiency, long cycle stability, and high rate capability, delivering a high capacity of 1569 mAh g-1 after 200 cycles at the current density of 1000 mA g-1. The improved electrochemical performance in a mesoporous Si-Cu nanocomposite was attributed to the high electrical conductivity, high Li+ ion mobility, and structural stability to restrict the aggregation and pulverization of active materials.

18.
Adv Sci (Weinh) ; 6(6): 1800843, 2019 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-30937254

RESUMO

Layered lithium transition-metal oxide materials, e.g., Li(Ni1- x - y Co x Mn y )O2 (NCM) and Li(Ni1- x - y Co x Al y )O2, are the most promising candidates for lithium-ion battery cathodes. They generally consist of ≈10 µm spherical particles densely packed with smaller particles (0.1-1 µm), called secondary and primary particles, respectively. The micrometer- to nanometer-sized particles are critical to the battery performance because they affect the reaction capability of the cathode. Herein, the crystal structure of the primary particles of NCM materials is revisited. Elaborate transmission electron microscopy investigations reveal that the so-called primary particles, often considered as single crystals, are in fact polycrystalline secondary particles. They contain low-angle and exceptionally stable special grain boundaries (GBs) presumably created during aggregation via an oriented attachment mechanism. Therefore, this so-called primary particle is renamed as primary-like particle. More importantly, the low-angle GBs between the smaller true primary particles cause the development of nanocracks within the primary-like particles of Ni-rich NCM cathodes after repetitive electrochemical cycles. In addition to rectifying a prevalent misconception about primary particles, this study provides a previously unknown but important origin of structural degradation in Ni-rich layered cathodes.

19.
ChemSusChem ; 12(11): 2439-2446, 2019 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-30916373

RESUMO

Ni-rich layered LiNi1-x-y Cox Mny O2 systems are the most promising cathode materials for high energy density Li-ion batteries (LIBs). However, Ni-rich cathode materials inevitably suffer from rapid capacity fading and poor rate capability owing to structural instability and unstable surface side reactions. Zr doping has proven to be an effective method to enhance the cycle and rate performances by stabilizing the structure and increasing the Li+ diffusion rate. Herein, effects of Zr-doping on the structural stability and Li+ diffusion kinetics are thoroughly investigated in LiNi0.6 Co0.2 Mn0.2 O2 (LNCM) cathode material using atomic-resolution scanning transmission electron microscopy imaging, XRD Rietveld refinement, and density functional theory calculations. Zr doping mitigates the degree of cation mixing, decreases the structural transformation, and facilitates Li+ diffusion resulting in improved cyclic performance and rate capability. Based on the obtained results, an atomistic model is proposed to explain the effects of Zr doping on the structural stability and Li+ diffusion kinetics in LNCM cathode materials.

20.
Chem Commun (Camb) ; 55(22): 3207-3210, 2019 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-30806396

RESUMO

V4P7 nanoparticles were synthesized via high-energy mechanical milling and their electrochemical properties as an anode for sodium-ion batteries were studied and compared with those of VO2(B)/Na and V4P7/Li cells, focusing on the electrochemical reaction mechanism and cycle performance. The V4P7 showed excellent cycling behavior even without any conductive material.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...