Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
IUCrJ ; 8(Pt 3): 462-467, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33953932

RESUMO

The compound α-Ga2O3 is an ultra-wide-bandgap semiconductor and possesses outstanding properties such as a high breakdown voltage and symmetry compared with other phases. It has been studied for applications in high-performance power devices. However, it is difficult to obtain a high-quality thin films because α-Ga2O3 can only grow heteroepitaxially, which results in residual stress generation owing to lattice mismatch and thermal expansion between the substrate and α-Ga2O3. To overcome this, α-Ga2O3 was grown on a conical frustum-patterned sapphire substrate by halide vapor-phase epitaxy. The surface morphology was crack-free and flat. The α-Ga2O3 grown on a frustum-patterned substrate and a conventional sapphire substrate at 500°C exhibited full-width at half-maxima of 961 and 1539 arcsec, respectively, for 10-12 diffraction. For the former substrate, lateral growth on the pattern and threading dislocation bending towards the pattern suppressed the propagation of threading dislocations generated at the interface, which reduced the threading dislocation propagation to the surface by half compared with that on the latter conventional substrate. The results suggest that conical frustum-patterned sapphire substrates have the potential to produce high-quality α-Ga2O3 epilayers.

2.
Microscopy (Oxf) ; 65(6): 499-507, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27609112

RESUMO

Recent years have seen a great deal of progress in the development of transmission electron microscopy-based techniques for strain measurement. Dark-field electron holography (DFEH) is a new technique offering configuration of the off-axis principle. Using this technique with medium magnification (Holo-M), we carried out strain measurements in nanoscale-triangular SiGe/(001) Si with (004), (2-20) and (-111) diffraction spots. The reconstruction of holograms and interpretation of strain maps in term of strain precision were discussed and the strain distributions in the SiGe/(001) Si patterns were visualized. Based on linear anisotropic elastic theory for strain simulation, the simulated results obtained by the finite element method compared with the experimental results acquired by DFEH. The strain values were found to be 0.9-1.0%, 1.1-1.2% and 1.0-1.1%, for the (004), (2-20) and (-111) diffracted beams, respectively, and the strain precisions were determined to be ~2.1 × 10-3, 3.2 × 10-3 and 9.1 × 10-3 for the corresponding diffraction spots. As a result, DFEH is highlighted as a powerful technique for strain measurement, offering high-strain precision, high-spatial resolution and a large field of view.

3.
Microsc Microanal ; 19 Suppl 5: 145-8, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23920194

RESUMO

The growth of high-quality indium (In)-rich In(X)Ga(1-X)N alloys is technologically important for applications to attain highly efficient green light-emitting diodes and solar cells. However, phase separation and composition modulation in In-rich In(X )Ga(1-X)N alloys are inevitable phenomena that degrade the crystal quality of In-rich In(X)Ga(1-X)N layers. Composition modulations were observed in the In-rich In(X)Ga(1-X)N layers with various In compositions. The In composition modulation in the In X Ga1-X N alloys formed in samples with In compositions exceeding 47%. The misfit strain between the InGaN layer and the GaN buffer retarded the composition modulation, which resulted in the formation of modulated regions 100 nm above the In(0.67)Ga(0.33)N/GaN interface. The composition modulations were formed on the specific crystallographic planes of both the {0001} and {0114} planes of InGaN.

4.
Adv Mater ; 24(25): 3396-400, 2012 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-22628021

RESUMO

Bismuth nanocrystals for a nanoscale floating gate memory device are self-assembled in Bi(2) Mg(2/3) Nb(4/3) O(7) (BMN) dielectric films grown at room temperature by radio-frequency sputtering. The TEM cross-sectional image shows the "real" structure grown on a Si (001) substrate. The image magnified from the dotted box (red color) in the the cross-sectional image clearly shows bismuth nanoparticles at the interface between the Al(2) O(3) and HfO(2) layer (right image). Nanoparticles approximately 3 nm in size are regularly distributed at the interface.


Assuntos
Bismuto/química , Compostos de Magnésio/química , Nanopartículas Metálicas/química , Nanotecnologia/instrumentação , Nióbio/química , Óxido de Alumínio/química , Cristalização , Háfnio/química , Óxidos/química , Semicondutores , Temperatura
5.
J Nanosci Nanotechnol ; 12(2): 1328-31, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22629949

RESUMO

Controlling the dimensions, positioning, and shapes of semiconductor nanowires, nanorods, and nanobelts lies in the synthesis and understanding of their growth mechanism. Controlled growth and synthesis is required in the fabrication of nanodevices and nanosensors. Among methods utilized for one-dimensional nanostructure synthesis, the hydrothermal process--a simple and cost-effective technique involving a low process temperature--has emerged as a powerful tool for the fabrication of anisotropic nanomaterials. Under hydrothermal conditions, many starting materials can undergo quite unexpected reactions, which are often accompanied by the formation of nanoscopic morphologies that are not accessible by classical routes. Synthesized ZnO nanostructures from aqueous solutions are usually poor in terms of morphology and size control. To improve the growth conditions and the controllability of the process, the use of surfactants or organic solvents has been attempted. In the present work, ZnO nanorods were grown on templates with a pre-sputtered ZnO seed layer over oxidized Si (100) substrates, and polyvinyl pyrrolidone (PVP) was used as a surfactant. By varying the PVP concentration in the growth solution, we can control the diameter and density of ZnO nanorods. The optical property of ZnO nanorods is highly improved by PVP addition.

6.
J Nanosci Nanotechnol ; 12(2): 1425-8, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22629971

RESUMO

Tin oxide-single wall carbon nanotube (SWCNT) nano composites are synthesized for gas sensor application. The fabrication includes deposition of porous SWCNTs on thermally oxidized SiO2 substrates followed by rheotaxial growth of Sn and thermal oxidation at 300, 400, 500, and 600 degrees C in air. The effects of oxidation temperature on morphology, microstructure, and gas sensing properties are investigated for process optimization. The tin monoxide oxidized at 400 degrees C showed the highest response at the operating temperature of 200 degrees C. Under the optimized test condition, the composite structure showed better response than both structures of SWCNTs and thin film SnO.


Assuntos
Nanotubos de Carbono , Óxidos de Nitrogênio/análise , Compostos de Estanho/química , Microscopia Eletrônica de Varredura , Difração de Raios X
7.
Adv Mater ; 23(46): 5557-62, 2011 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-22057476

RESUMO

High-resolution transmission electron microscopy (HRTEM) is used to observe a TiO2/ITO-coated composite nanostructure grown onto single-walled carbon nanotubes (SWCNTs). The SWCNTs, indium tin oxide (ITO), and TiO2 mixtures of anatase (A) and rutile (R) are clearly distinguished in the HRTEM images. The thickness of the SWCNT was about 3 nm, and the TiO2 shell included different polycrystalline structures.


Assuntos
Eletroquímica/métodos , Nanotecnologia/métodos , Nanotubos de Carbono/química , Processos Fotoquímicos , Temperatura , Compostos de Estanho/química , Titânio/química , Volatilização
8.
Nanotechnology ; 20(23): 235304, 2009 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-19448285

RESUMO

Well aligned ZnO nanowall arrays with submicron pitch were grown on a periodically polarity-inverted ZnO template using a carbothermal reduction process. Under the conditions of a highly dense Au catalyst for increasing nucleation sites, ZnO nanowalls with a thickness of 126 +/- 10 nm, an average height of 3.4 microm, and a length of about 10 mm were formed on the template. The nanowalls were only grown on a Zn-polar surface due to a different growth mode with an O-polar surface. The results of x-ray diffraction and photoluminescence (PL) measurements revealed a single crystalline, vertical alignment on the template, and a large surface to volume ratio of the ZnO nanowalls.

9.
J Mater Sci Mater Med ; 20(7): 1419-26, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19266266

RESUMO

The mechanical properties of bone are dictated by the size, shape and organization of the mineral and matrix phases at multiple levels of hierarchy. While much is known about structure-function relations at the macroscopic level, less is known at the nanoscale, especially for trabecular bone. In this study, high resolution transmission electron microscopy (HRTEM) was carried out to analyze shape and orientation of apatite crystals in murine femoral trabecular bone. The distribution and orientation of mineral apatites in trabecular bone were different from lamellar bone and the c-axis of the tablet-like mineral apatite crystals in trabecular bone was arranged with no preferred orientation. The difference in the orientation distribution of apatite crystals of trabecular bone in the present study compared with that of lamellar bone found in the literature can be attributed to the more complex local stress state in trabecular bone. Apatite crystals were also found to be multi-crystalline, not single crystalline, from dark field image analysis. From the observations of this study, it is suggested that Wolff's law can be applicable to the nanostructural orientation and distribution of apatite crystals in trabecular bone. It was also found that small round crystalline particles observed adjacent to collagen fibrils were similar in size and shape to the apatite crystals in biomimetically nucleated synthetic amorphous calcium phosphate, which suggests that they are bone mineral apatite nuclei.


Assuntos
Calcificação Fisiológica/fisiologia , Fêmur/fisiologia , Fêmur/ultraestrutura , Modelos Anatômicos , Modelos Biológicos , Nanoestruturas/ultraestrutura , Animais , Simulação por Computador , Técnicas In Vitro , Masculino , Camundongos , Camundongos Endogâmicos C57BL
10.
J Phys Chem B ; 110(9): 3856-9, 2006 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-16509665

RESUMO

We report on the growth of uniquely shaped ZnO nanowires with high surface area and patterned over large areas by using a poly(dimethylsiloxane) (PDMS) microfluidic channel technique. The synthesis uses first a patterned seed template fabricated by zinc acetate solution flowing though a microfluidic channel and then growth of ZnO nanowire at the seed using thermal chemical vapor deposition on a silicon substrate. Variations the ZnO nanowire by seed pattern formed within the microfluidic channel were also observed for different substrates and concentrations of the zinc acetate solution. The photocurrent properties of the patterned ZnO nanowires with high surface area, due to their unique shape, were also investigated. These specialized shapes and patterning technique increase the possibility of realizing one-dimensional nanostructure devices such as sensors and optoelectric devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...