Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(11)2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38892160

RESUMO

Capmatinib and savolitinib, selective MET inhibitors, are widely used to treat various MET-positive cancers. In this study, we aimed to determine the effects of these inhibitors on MET-amplified gastric cancer (GC) cells. Methods: After screening 37 GC cell lines, the following cell lines were found to be MET-positive with copy number variation >10: SNU-620, ESO51, MKN-45, SNU-5, and OE33 cell lines. Next, we assessed the cytotoxic response of these cell lines to capmatinib or savolitinib alone using cell counting kit-8 and clonogenic cell survival assays. Western blotting was performed to assess the effects of capmatinib and savolitinib on the MET signaling pathway. Xenograft studies were performed to evaluate the in vivo therapeutic efficacy of savolitinib in MKN-45 cells. Savolitinib and capmatinib exerted anti-proliferative effects on MET-amplified GC cell lines in a dose-dependent manner. Savolitinib inhibited the phosphorylation of MET and downstream signaling pathways, such as the protein kinase B (AKT) and extracellular signal-regulated kinase (ERK) pathways, in MET-amplified GC cells. Additionally, savolitinib significantly decreased the number of colonies formed on the soft agar and exerted dose-dependent anti-tumor effects in an MKN-45 GC cell xenograft model. Furthermore, a combination of trastuzumab and capmatinib exhibited enhanced inhibition of AKT and ERK activation in human epidermal growth factor receptor-2 (HER2)- and MET-positive OE33 cells. Targeting MET with savolitinib and capmatinib efficiently suppressed the growth of MET-amplified GC cells. Moreover, these MET inhibitors exerted synergistic effects with trastuzumab on HER2- and MET-amplified GC cells.


Assuntos
Proteínas Proto-Oncogênicas c-met , Neoplasias Gástricas , Triazinas , Ensaios Antitumorais Modelo de Xenoenxerto , Humanos , Proteínas Proto-Oncogênicas c-met/metabolismo , Proteínas Proto-Oncogênicas c-met/antagonistas & inibidores , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/patologia , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/genética , Linhagem Celular Tumoral , Animais , Triazinas/farmacologia , Camundongos , Benzamidas/farmacologia , Proliferação de Células/efeitos dos fármacos , Neoplasias Esofágicas/tratamento farmacológico , Neoplasias Esofágicas/patologia , Neoplasias Esofágicas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Camundongos Nus , Inibidores de Proteínas Quinases/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Terapia de Alvo Molecular , Feminino , Imidazóis
2.
Dis Aquat Organ ; 156: 39-45, 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-38078797

RESUMO

The protozoan parasite Perkinsus olseni has become a focus of attention since it has been responsible for mass mortalities and economic losses in a wide range of bivalve hosts globally. The P. olseni host range along the south coast of Korea may extend beyond what was previously understood, and blood cockles in the Family Arcidae are also suggested to be potential hosts of P. olseni. In the present study, we applied histology and molecular techniques to identify Perkinsus sp. infections in the blood cockles Tegillarca granosa, which have been commercially exploited on the south coast of Korea for several decades. Histology and molecular techniques, including genus-specific immunofluorescence assay, species-specific fluorescence in situ hybridization, and phylogeny based on the ribosomal DNA internal transcribed spacer region revealed that T. granosa is infected by P. olseni, although the prevalence was low (0.5%). Histology revealed massive hemocyte infiltrations in the mantle, gill, and digestive gland connective tissues, indicating that the infection exerts negative impacts on the host cockles.


Assuntos
Arcidae , Bivalves , Cardiidae , Animais , Hibridização in Situ Fluorescente/veterinária , Bivalves/parasitologia , República da Coreia/epidemiologia
3.
Cancers (Basel) ; 15(19)2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37835462

RESUMO

The incidence of HER2 amplification in advanced gastroesophageal adenocarcinoma (GC) reportedly ranges between 10% and 20%, depending on the population studied and the geographical region. Trastuzumab (Tmab) is the standard treatment for GCs with HER2 amplification. Metformin, a widely used antidiabetic drug, is an activator of AMP kinase that can affect the mTOR signaling pathway. The following GC cells were evaluated: HER2+ NCI-N87, YCC-19, YCC-38, OE19, OE33, and HER2- AGS. The effects of Tmab and metformin on these cell lines were assessed as single agents and in combination using cell viability assays, Western blotting, and xenograft models. Metformin induced phosphorylation of AMP kinase in all tested GC cells and dephosphorylation of mTOR in Tmab-sensitive GC cells. We observed that treatment with Tmab in combination with metformin induced a significant decrease in the number of colonies formed on soft agar by N87, YCC-19, YCC-38, and OE19 cells (88%, 95%, 73%, and 98%, respectively), in comparison to the number formed by control cells or cells in the single-treatment groups. No growth inhibition was detected in OE33 cells treated with Tmab alone. Combination with metformin resulted in decreased phosphorylation of HER2 and its downstream targets, AKT and ERK, in Tmab-sensitive HER2+ cells. Phospho-receptor tyrosine kinase (RTK) arrays were used to profile the phospho-proteome, which demonstrated a synergistic decrease in phosphorylation of EGFR, HER2, and HER3. Furthermore, the combination of Tmab and metformin exhibited enhanced antitumor effects in a xenograft model. Collectively, these data suggest that Tmab and metformin act synergistically in HER2+ GC cells. Since metformin is widely used and relatively non-toxic, its addition to the therapeutic regimen along with Tmab could enhance the clinical efficacy in patients with HER2+ GC.

4.
Hum Cell ; 36(6): 2179-2186, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37707774

RESUMO

Transformed small-cell lung cancer (tSCLC) from EGFR-mutant adenocarcinoma is a rare and aggressive form of lung cancer that can occur when the tumor develops resistance to EGFR targeted therapy and the cancer cells acquire additional genomic alterations that cause them to transform into SCLC. Treatment for tSCLC has not been established yet, and chemotherapy regimens for de novo SCLC are mostly recommended. However, these treatments showed disappointing outcome, and novel anti-cancer agents and immunological approaches are currently being developed. The patient-derived cell line is a critical tool for pre-clinical and translational research, but cell line models for tSCLC are not publicly available from cell banks. The aim of this study was to establish and characterize a novel cell line for tSCLC. Using a lymph-node biopsy tissue from a 58-year-old female patient, whose tumor was EGFR-mutant lung adenocarcinoma progressed on afatinib, we successfully established a cell line, named BMC-PDC-019. The tumor sample and cell line showed a typical expression of SCLC markers, such as CD56 and synaptophysin. The population doubling-time of BMC-PDC-019 cells was 48 h. We examined a range of proliferation-inhibiting effects of anti-cancer drugs currently used for de novo SCLC, using BMC-PDC-019 cells. We concluded that BMC-PDC-019 would be a useful tool for pre-clinical and translational research.

5.
Mol Biotechnol ; 2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37428433

RESUMO

Potential threat of smallpox bioterrorism and concerns related to the adverse effects of currently licensed live-virus vaccines suggest the need to develop novel vaccines with better efficacy against smallpox. Use of DNA vaccines containing specific antigen-encoding plasmids prevents the risks associated with live-virus vaccines, offering a promising alternative to conventional smallpox vaccines. In this study, we investigated the efficiency of toll-like receptor (TLR) ligands in enhancing the immunogenicity of smallpox DNA vaccines. BALB/c mice were immunized with a DNA vaccine encoding the vaccinia virus L1R protein, along with the cytosine-phosphate-guanine (CpG) motif as a vaccine adjuvant, and their immune response was analyzed. Administration of B-type CpG oligodeoxynucleotides (ODNs) as TLR9 ligands 24 h after DNA vaccination enhanced the Th2-biased L1R-specific antibody immunity in mice. Moreover, B-type CpG ODNs improved the protective effects of the DNA vaccine against the lethal Orthopoxvirus challenge. Therefore, use of L1R DNA vaccines with CpG ODNs as adjuvants is a promising approach to achieve effective immunogenicity against smallpox infection.

7.
Animals (Basel) ; 12(22)2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36428377

RESUMO

In the Republic of Korea, Enterocytozoon hepatopenaei (EHP) was first isolated from Pacific whiteleg shrimp in April 2020; however, there are no existing reports of EHP infection in other shrimp or prawns. Here, we aimed to investigate EHP infection and its prevalence in giant freshwater prawn farms in the Republic of Korea. We tested prawns from 22 farms for EHP infection, and samples from eight farms showed positive EHP infection results in 2021. In EHP-infected prawn farms, the prevalence ranged from 4.9% to 18.2%. The prevalence of EHP infection in the Republic of Korea, derived from the prevalence in prawn farms, was estimated to be 0.8% in 2021. The proliferation of EHP was observed within the hepatopancreatic epithelial cells of prawns using H&E and Giemsa staining. Mature EHP was observed in the sinus between epithelial cells of the digestive tubules. Phylogenetic analysis revealed a clade distinct from the previously reported EHP in Pacific whiteleg shrimps. This is the first report of EHP infection in a giant freshwater prawn in the Republic of Korea, where the prevalence of EHP infection is not high, but it is recognized as an emerging disease that requires periodic monitoring and quarantine management in giant freshwater prawns.

8.
J Clin Invest ; 131(1)2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-33393490

RESUMO

Slow-cycling/dormant cancer cells (SCCs) have pivotal roles in driving cancer relapse and drug resistance. A mechanistic explanation for cancer cell dormancy and therapeutic strategies targeting SCCs are necessary to improve patient prognosis, but are limited because of technical challenges to obtaining SCCs. Here, by applying proliferation-sensitive dyes and chemotherapeutics to non-small cell lung cancer (NSCLC) cell lines and patient-derived xenografts, we identified a distinct SCC subpopulation that resembled SCCs in patient tumors. These SCCs displayed major dormancy-like phenotypes and high survival capacity under hostile microenvironments through transcriptional upregulation of regulator of G protein signaling 2 (RGS2). Database analysis revealed RGS2 as a biomarker of retarded proliferation and poor prognosis in NSCLC. We showed that RGS2 caused prolonged translational arrest in SCCs through persistent eukaryotic initiation factor 2 (eIF2α) phosphorylation via proteasome-mediated degradation of activating transcription factor 4 (ATF4). Translational activation through RGS2 antagonism or the use of phosphodiesterase 5 inhibitors, including sildenafil (Viagra), promoted ER stress-induced apoptosis in SCCs in vitro and in vivo under stressed conditions, such as those induced by chemotherapy. Our results suggest that a low-dose chemotherapy and translation-instigating pharmacological intervention in combination is an effective strategy to prevent tumor progression in NSCLC patients after rigorous chemotherapy.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/metabolismo , Neoplasias Pulmonares/metabolismo , Proteínas de Neoplasias/metabolismo , Biossíntese de Proteínas , Proteínas RGS/metabolismo , Animais , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Feminino , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Proteínas RGS/genética , Recidiva , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Cancers (Basel) ; 12(7)2020 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-32630838

RESUMO

Slow-cycling cancer cells (SCCs) with a quiescence-like phenotype are believed to perpetrate cancer relapse and progression. However, the mechanisms that mediate SCC-derived tumor recurrence are poorly understood. Here, we investigated the mechanisms underlying cancer recurrence after chemotherapy, focusing on the interplay between SCCs and the tumor microenvironment. We established a preclinical model of SCCs by exposing non-small-cell lung cancer (NSCLC) cells to either the proliferation-dependent dye carboxyfluorescein diacetate succinimidyl ester (CFSE) or chemotherapeutic drugs. An RNA sequencing analysis revealed that the established SCCs exhibited the upregulation of a group of genes, especially epidermal growth factor (EGF). Increases in the number of vascular endothelial growth factor receptor (VEGFR)-positive vascular endothelial cells and epidermal growth factor receptor (EGFR) activation were found in NSCLC cell line- and patient-derived xenograft tumors that progressed upon chemotherapy. EGFR tyrosine kinase inhibitors effectively suppressed the migration and tube formation of vascular endothelial cells. Furthermore, activating transcription factor 6 (ATF6) induced the upregulation of EGF, and its antagonism effectively suppressed these SCC-mediated events and inhibited tumor recurrence after chemotherapy. These results suggest that the ATF6-EGF signaling axis in SCCs functions to trigger the angiogenesis switch in residual tumors after chemotherapy and is thus a driving force for the switch from SCCs to actively cycling cancer cells, leading to tumor recurrence.

10.
Cancers (Basel) ; 12(6)2020 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-32549194

RESUMO

The receptor tyrosine kinase c-MET regulates processes essential for tissue remodeling and mammalian development. The dysregulation of c-MET signaling plays a role in tumorigenesis. The aberrant activation of c-MET, such as that caused by gene amplification or mutations, is associated with many cancers. c-MET is therefore an attractive therapeutic target, and inhibitors are being tested in clinical trials. However, inappropriate patient selection criteria, such as low amplification or expression level cut-off values, have led to the failure of clinical trials. To include patients who respond to MET inhibitors, the selection criteria must include MET oncogenic addiction. Here, the efficacy of ABN401, a MET inhibitor, was investigated using histopathologic and genetic analyses in MET-addicted cancer cell lines and xenograft models. ABN401 was highly selective for 571 kinases, and it inhibited c-MET activity and its downstream signaling pathway. We performed pharmacokinetic profiling of ABN401 and defined the dose and treatment duration of ABN401 required to inhibit c-MET phosphorylation in xenograft models. The results show that the efficacy of ABN401 is associated with MET status and they highlight the importance of determining the cut-off values. The results suggest that clinical trials need to establish the characteristics of each sample and their correlations with the efficacy of MET inhibitors.

11.
Cancer Res ; 80(11): 2257-2272, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32193288

RESUMO

Quiescent cancer cells are believed to cause cancer progression after chemotherapy through unknown mechanisms. We show here that human non-small cell lung cancer (NSCLC) cell line-derived, quiescent-like, slow-cycling cancer cells (SCC) and residual patient-derived xenograft (PDX) tumors after chemotherapy experience activating transcription factor 6 (ATF6)-mediated upregulation of various cytokines, which acts in a paracrine manner to recruit fibroblasts. Cancer-associated fibroblasts (CAF) underwent transcriptional upregulation of COX2 and type I collagen (Col-I), which subsequently triggered a slow-to-active cycling switch in SCC through prostaglandin E2 (PGE2)- and integrin/Src-mediated signaling pathways, leading to cancer progression. Both antagonism of ATF6 and cotargeting of Src/COX2 effectively suppressed cytokine production and slow-to-active cell cycling transition in SCC, withholding cancer progression. Expression of COX2 and Col-I and activation of Src were observed in patients with NSCLC who progressed while receiving chemotherapy. Public data analysis revealed significant association between COL1A1 and SRC expression and NSCLC relapse. Overall, these findings indicate that a proinflammatory niche created by the interplay between SCC and CAF triggers tumor progression. SIGNIFICANCE: Cotargeting COX2 and Src may be an effective strategy to prevent cancer progression after chemotherapy.


Assuntos
Fibroblastos Associados a Câncer/patologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/patologia , Citocinas/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Fator 6 Ativador da Transcrição/metabolismo , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Fibroblastos Associados a Câncer/efeitos dos fármacos , Fibroblastos Associados a Câncer/metabolismo , Carcinoma Pulmonar de Lewis/tratamento farmacológico , Carcinoma Pulmonar de Lewis/metabolismo , Carcinoma Pulmonar de Lewis/patologia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Celecoxib/administração & dosagem , Comunicação Celular/efeitos dos fármacos , Comunicação Celular/fisiologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Colágeno Tipo I/metabolismo , Ciclo-Oxigenase 2/metabolismo , Inibidores de Ciclo-Oxigenase 2/farmacologia , Citocinas/biossíntese , Dasatinibe/administração & dosagem , Progressão da Doença , Resistencia a Medicamentos Antineoplásicos , Feminino , Humanos , Inflamação/metabolismo , Inflamação/patologia , Neoplasias Pulmonares/metabolismo , Camundongos , Camundongos SCID , Recidiva Local de Neoplasia/metabolismo , Recidiva Local de Neoplasia/patologia , Recidiva Local de Neoplasia/prevenção & controle , Quinases da Família src/antagonistas & inibidores
12.
Pharmaceutics ; 12(2)2020 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-32028611

RESUMO

c-Met is a receptor tyrosine kinase with no commercially available product despite being a pivotal target in cancer progression. Unlike other c-Met inhibitors that fail clinically, ABN401 is a newly synthesized c-Met inhibitor that is not potentially degraded by aldehyde oxidase (AO) in human liver cytosol. This study aimed to determine the physicochemical stability, pharmacokinetics in beagle dogs, and therapeutic effect of ABN401 in a c-Met-amplified non-small-cell lung cancer (NSCLC) patient-derived xenograft (PDX) model. ABN401 was found to be a weak basic compound, with pKa and log P values of 7.49 and 2.46, respectively. It is poorly water-soluble but soluble at acidic pH. The accelerated storage stability is dependent on temperature, but the purity remains at over 97% after 6 months. The bioavailability is approximately 30% in dogs and it is highly efficient in the PDX model, achieving around 90% tumor growth inhibition in combination with erlotinib. These observations indicate that the compound is acceptable for the next phase of trials.

13.
Front Pharmacol ; 11: 608774, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33505314

RESUMO

Type I interferon (IFN) has been approved as an anticancer agent to treat some malignancies. However, IFNs have a short in vivo half-life, systemic toxicity, and poor biophysical properties, which prevent it from being widely used for cancer therapy. This study aimed to construct recombinant IFN-ß-1a mutein immunocytokines that comprise a human epidermal growth factor receptor 2 (HER2)-targeting antibody and IFN-ß muteins with an additional glycosylation, which can overcome the limitation of the cytokine itself. Hence, the molecular design aims to 1) enhance productivity and biophysical properties by adding secondary glycosylation in IFN-ß, 2) increase the therapeutic index of IFN-ß therapy by preferential retention at the tumor by possessing high affinity for HER2-expressing cancer cells, and 3) improve the pharmacokinetics and, thus, the convenience of IFN-ß administration. The yield of trastuzumab-IFN-ß mutein was higher than that of trastuzumab-wild-type IFN-ß in the mammalian cell culture system. Trastuzumab-IFN-ß mutein showed similar IFN activity and HER2-targeting ability equivalent to that of IFN-ß mutein and trastuzumab, respectively. Trastuzumab-IFN-ß mutein directly inhibited the growth of HER2-positive gastric cancer cell lines and was more effective than trastuzumab or IFN-ß mutein alone. Trastuzumab-IFN-ß mutein and IFN-ß mutein displayed enhanced immune cell-mediated cytotoxicity. Collectively, trastuzumab-IFN-ß mutein may have indirect immune cell-mediated antitumor effects and direct cell growth inhibitory effects. Tumor-targeting effect of trastuzumab-IFN-ß mutein was analyzed using in vivo fluorescence imaging. The accumulation of trastuzumab-IFN-ß mutein was observed in HER2-positive tumors rather than other tissues except the liver. To evaluate the both direct tumor growth inhibition effect and indirect immune cell-mediated antitumor effect, we tested the effect of trastuzumab-IFN-ß mutein in HER2-positive cancer xenograft models using nude mice or humanized mice. Trastuzumab-IFN-ß mutein could significantly enhance tumor regression when compared with trastuzumab or IFN-ß mutein. In addition, an increase in tumor-infiltrating lymphocytes was observed in the trastuzumab-IFN-ß mutein-treated group, implying that the tumor-targeting IFN-ß may have an enhanced antitumor effect through increased immune response. Therefore, targeting IFN-ß with an anti-HER2 monoclonal antibody makes the immunocytokine more potent than either agent alone. These novel findings suggest that trastuzumab-IFN-ß mutein merits clinical evaluation as a new candidate of anticancer therapeutics.

14.
J Microbiol Biotechnol ; 29(7): 1165-1176, 2019 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-31280529

RESUMO

Botulinum neurotoxins (BoNTs), produced by Clostridium botulinum, are the most toxic substances known. However, the number of currently approved medical countermeasures for these toxins is very limited. Therefore, studies on therapeutic antitoxins are essential to prepare for toxin-related emergencies. Currently, more than 10,000 Halla horses, a crossbreed between the native Jeju and Thoroughbred horses, are being raised in Jeju Island of Korea. They can be used for equine antitoxin experiments and production of hyperimmune serum against BoNT/A1. Instead of the inactivated BoNT/A1 toxoid, Halla horse was immunized with the receptor-binding domain present in the C-terminus of heavy chain of BoNT/A1 (BoNT/A1-HCR) expressed in Escherichia coli. The anti-BoNT/A1-HCR antibody titer increased rapidly by week 4, and this level was maintained for several weeks after boosting immunization. Notably, 20 µL of the week 24 BoNT/A1-HCR(-immunized) equine serum showed an in vitro neutralizing activity of over 8 international unit (IU) of a reference equine antitoxin. Furthermore, 20 µL of equine serum and 100 µg of purified equine F(ab')2 showed 100% neutralization of 10,000 LD50 in vivo. The results of this study shall contribute towards optimizing antitoxin production for BoNT/A1, which is essential for emergency preparedness and response.


Assuntos
Anticorpos Antibacterianos/imunologia , Vacinas Bacterianas/imunologia , Antitoxina Botulínica/imunologia , Toxinas Botulínicas Tipo A/imunologia , Clostridium botulinum/imunologia , Fragmentos de Peptídeos/imunologia , Animais , Anticorpos Antibacterianos/sangue , Vacinas Bacterianas/química , Antitoxina Botulínica/sangue , Toxinas Botulínicas Tipo A/química , Feminino , Cavalos , Imunização/veterinária , Camundongos Endogâmicos BALB C , Testes de Neutralização/veterinária , Fragmentos de Peptídeos/química , Coelhos
15.
Org Biomol Chem ; 17(31): 7388-7397, 2019 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-31342041

RESUMO

Selective bioactive compounds have emerged as major players in chemical biology for their potential in disrupting diverse biological pathways with minimal adverse effects. Using phenotypic screening, we identified an anti-cancer agent, SB2001, with a highly specific cytotoxicity toward HeLa human cervical cancer cells. The subsequent mechanistic study revealed that SB2001 induced apoptotic cell death through restoring p53 function and suppressed the human papillomavirus (HPV)-mediated oncoprotein signaling pathway via oxidative damage in HeLa cells. SB2001 also selectively induced HeLa-specific tumor regression without any adverse effects in an in vivo tumor xenograft model, demonstrating its potential as a promising chemical probe.


Assuntos
Antineoplásicos/farmacologia , Regulação para Baixo/efeitos dos fármacos , Descoberta de Drogas , Compostos Heterocíclicos com 2 Anéis/farmacologia , Papillomaviridae/efeitos dos fármacos , Pirazóis/farmacologia , Piridinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Animais , Antineoplásicos/química , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Compostos Heterocíclicos com 2 Anéis/química , Humanos , Masculino , Camundongos , Camundongos Endogâmicos ICR , Estrutura Molecular , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Imagem Óptica , Estresse Oxidativo/efeitos dos fármacos , Papillomaviridae/metabolismo , Fenótipo , Pirazóis/química , Piridinas/química , Relação Estrutura-Atividade , Células Tumorais Cultivadas
16.
Biomolecules ; 10(1)2019 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-31905631

RESUMO

Most malignant tumors originate from epithelial tissues in which tight junctions mediate cell-cell interactions. Tight junction proteins, especially claudin-3 (CLDN3), are overexpressed in various cancers. Claudin-3 is exposed externally during tumorigenesis making it a potential biomarker and therapeutic target. However, the development of antibodies against specific CLDN proteins is difficult, because CLDNs are four-transmembrane domain proteins with high homology among CLDN family members and species. Here, we developed a human IgG1 monoclonal antibody (h4G3) against CLDN3 through scFv phage display using CLDN3-overexpressing stable cells and CLDN3-embedded lipoparticles as antigens. The h4G3 recognized the native conformation of human and mouse CLDN3 without cross-reactivity to other CLDNs. The binding kinetics of h4G3 demonstrated a sub-nanomolar affinity for CLDN3 expressed on the cell surface. The h4G3 showed antibody-dependent cellular cytotoxicity (ADCC) according to CLDN3 expression levels in various cancer cells by the activation of FcγRIIIa (CD16a). The biodistribution of h4G3 was analyzed by intravenous injection of fluorescence-conjugated h4G3 which showed that it localized to the tumor site in xenograft mice bearing CLDN3-expressing tumors. These results indicate that h4G3 recognizes CLDN3 specifically, suggesting its value for cancer diagnosis, antibody-drug conjugates, and potentially as a chimeric antigen receptor (CAR) for CLDN3-expressing pan-carcinoma.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/farmacocinética , Carcinoma/tratamento farmacológico , Carcinoma/metabolismo , Claudina-3/imunologia , Animais , Anticorpos Monoclonais/biossíntese , Anticorpos Monoclonais/química , Células CHO , Carcinoma/genética , Proliferação de Células , Células Cultivadas , Claudina-3/genética , Cricetulus , Humanos , Camundongos , Camundongos Nus , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/genética , Neoplasias Experimentais/metabolismo
17.
Fish Shellfish Immunol ; 81: 408-415, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30055252

RESUMO

A 5.6 kDa antimicrobial peptide (AMP) was purified from acidified gill extract of the pen shell, Atrina pectinata, by cation exchange and C18 reversed-phase high performance liquid chromatography. Comparison of the amino acid sequences and molecular weight of this peptide with those of other known AMPs revealed that it had high sequence homology with that of cgMolluscidin or hdMolluscidin; it was designated apMolluscidin. apMolluscidin comprises 59 amino acid residues containing several dibasic residue repeats and sequence repeats such as Lys-Lys and Lys-Gly. apMolluscidin exhibited potent antimicrobial activity against both Gram-positive bacteria including Bacillus subtilis (minimal effective concentration [MEC], 2.1 µg/mL), and Gram-negative bacteria including E. coli D31 (MEC, 0.5 µg/mL), without hemolytic activity. However, it did not show any activity against fungi such as Candida albicans. Secondary structure prediction suggested that it might form two helical regions and have an amphipathic structure. Full-length apMolluscidin cDNA contained 812 base pairs (bp), including a 5'-untranslated region (UTR) of 82 bp, a 3'-UTR of 547 bp, and a coding sequence of 183 bp encoding 60 amino acids (containing Met). Furthermore, qPCR analyses revealed that the mature peptide translated from apMolluscidin mRNA is expressed in a tissue-specific manner in locations such as the gill and siphon. These results indicate that apMolluscidin might be related to the innate immune defense system of abalone and may not act directly on the bacterial membrane. This is the first report of an AMP from the pen shell with a fully identified amino acid sequence.


Assuntos
Peptídeos Catiônicos Antimicrobianos , Bivalves , Animais , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/genética , Peptídeos Catiônicos Antimicrobianos/farmacologia , Bacillus subtilis/efeitos dos fármacos , Bivalves/genética , Bivalves/imunologia , Candida albicans/efeitos dos fármacos , Clonagem Molecular , DNA Complementar/genética , Escherichia coli/efeitos dos fármacos , Hemólise/efeitos dos fármacos , Conformação Proteica
18.
Autophagy ; 14(5): 812-824, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29130361

RESUMO

Tamoxifen is commonly used to treat patients with ESR/ER-positive breast cancer, but its therapeutic benefit is limited by the development of resistance. Recently, alterations in macroautophagy/autophagy function were demonstrated to be a potential mechanism for tamoxifen resistance. Although MTA1 (metastasis-associated 1) has been implicated in breast tumorigenesis and metastasis, its role in endocrine resistance has not been studied. Here, we report that the level of MTA1 expression was upregulated in the tamoxifen resistant breast cancer cell lines MCF7/TAMR and T47D/TR, and knockdown of MTA1 sensitized the cells to 4-hydroxytamoxifen (4OHT). Moreover, knockdown of MTA1 significantly decreased the enhanced autophagy flux in the tamoxifen resistant cell lines. To confirm the role of MTA1 in the development of tamoxifen resistance, we established a cell line, MCF7/MTA1, which stably expressed MTA1. Compared with parental MCF7, MCF7/MTA1 cells were more resistant to 4OHT-induced growth inhibition in vitro and in vivo, and showed increased autophagy flux and higher numbers of autophagosomes. Knockdown of ATG7 or cotreatment with hydroxychloroquine, an autophagy inhibitor, restored sensitivity to 4OHT in both the MCF7/MTA1 and tamoxifen resistant cells. In addition, AMP-activated protein kinase (AMPK) was activated, probably because of an increased AMP:ATP ratio and decreased expression of mitochondrial electron transport complex components. Finally, publicly available breast cancer patient datasets indicate that MTA1 levels correlate with poor prognosis and development of recurrence in patients with breast cancer treated with tamoxifen. Overall, our findings demonstrated that MTA1 induces AMPK activation and subsequent autophagy that could contribute to tamoxifen resistance in breast cancer.


Assuntos
Autofagia , Neoplasias da Mama/patologia , Resistencia a Medicamentos Antineoplásicos , Histona Desacetilases/metabolismo , Proteínas Repressoras/metabolismo , Tamoxifeno/farmacologia , Adenilato Quinase/metabolismo , Animais , Autofagia/efeitos dos fármacos , Neoplasias da Mama/genética , Neoplasias da Mama/ultraestrutura , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Células MCF-7 , Camundongos Endogâmicos BALB C , Camundongos Nus , Recidiva Local de Neoplasia/patologia , Prognóstico , Regiões Promotoras Genéticas/genética , Transdução de Sinais/efeitos dos fármacos , Transativadores , Resultado do Tratamento , Regulação para Cima/efeitos dos fármacos
19.
Front Pharmacol ; 9: 1568, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30733680

RESUMO

The glycoengineering approach is used to improve biophysical properties of protein-based drugs, but its direct impact on binding affinity and kinetic properties for the glycoengineered protein and its binding partner interaction is unclear. Type I interferon (IFN) receptors, composed of IFNAR1 and IFNAR2, have different binding strengths, and sequentially bind to IFN in the dominant direction, leading to activation of signals and induces a variety of biological effects. Here, we evaluated receptor-binding kinetics for each state of binary and ternary complex formation between recombinant human IFN-ß-1a and the glycoengineered IFN-ß mutein (R27T) using the heterodimeric Fc-fusion technology, and compared biological responses between them. Our results have provided evidence that the additional glycan of R27T, located at the binding interface of IFNAR2, destabilizes the interaction with IFNAR2 via steric hindrance, and simultaneously enhances the interaction with IFNAR1 by restricting the conformational freedom of R27T. Consequentially, altered receptor-binding kinetics of R27T in the ternary complex formation led to a substantial increase in strength and duration of biological responses such as prolonged signal activation and gene expression, contributing to enhanced anti-proliferative activity. In conclusion, our findings reveal N-glycan at residue 25 of R27T is a crucial regulator of receptor-binding kinetics that changes biological activities such as long-lasting activation. Thus, we believe that R27T may be clinically beneficial for patients with multiple sclerosis.

20.
Oncotarget ; 8(54): 92209-92226, 2017 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-29190909

RESUMO

Gastric cancer (GC), one of the most common cancers worldwide, has a high mortality rate due to limited treatment options. Identifying novel and promising molecular targets is a major challenge that must be overcome if treatment of advanced GC is to be successful. Here, we used comparative genomic hybridization and gene expression microarrays to examine genome-wide DNA copy number alterations (CNAs) and global gene expression in 38 GC samples from old and young patients. We identified frequent CNAs, which included copy number gains on chromosomes 3q, 7p, 8q, 20p, and 20q and copy number losses on chromosomes 19p and 21p. The most frequently gained region was 7p21.1 (55%), whereas the most frequently deleted region was 21p11.1 (50%). Recurrent highly amplified regions 17q12 and 7q31.1-7q31.31 harbored two well-known oncogenes: ERBB2 and MET. Correlation analysis of CNAs and gene expression levels identified CAPZA2 (co-amplified with MET) and genes GRB7, MIEN1, PGAP3, and STARD3 (co-amplified with ERBB2) as potential candidate cancer-promoting genes (CPGs). Public dataset analysis confirmed co-amplification of these genes with MET or ERBB2 in GC tissue samples, and revealed that high expression (except for PGAP3) was significantly associated with shorter overall survival. Knockdown of these genes using small interfering RNA led to significant suppression of GC cell proliferation and migration. Reduced GC cell proliferation mediated by CAPZA2 knockdown was attributable to attenuated cell cycle progression and increased apoptosis. This study identified novel candidate CPGs co-amplified with MET or ERBB2, and suggests that they play a functional role in GC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...