Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dent Mater ; 37(12): 1772-1782, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34607708

RESUMO

OBJECTIVES: To resolve the feasibility of the pulse-delay photocuring technique as a clinical strategy for reducing the detrimental polymerization stress induced in dental composites during the photocuring process. METHODS: Model dental composites with high and low-filler contents were cured with the pulse-delay photocuring technique using different combinations of photocuring variables (irradiance, exposure time, and delay time). Irradiance used ranged from 0.1W/cm2 to 4W/cm2. The exposure time of the first pulse varied from 0.2s to 27.2s and the delay times ranged from 10s to 120s. The radiant exposure was varied from 4J/cm2 to 20J/cm2. A cantilever-beam based instrument (NIST Standards Reference Instrument 6005) was used to implement the photocuring technique for the measurement of the polymerization properties (the degree of monomer conversion, polymerization stress induced due to shrinkage, and temperature change due to the reaction exotherm and curing light absorbance) simultaneously in real-time. These properties were compared with those obtained using the conventional photocuring technique (i.e., using a constant irradiance for a fixed exposure time, a uniform exposure). RESULTS: There exists a minimum radiant exposure, such that a reduction in the polymerization stress can be achieved without sacrificing the degree of monomer conversion by using the pulse-delay over the conventional photocuring technique. More specifically, stress reductions of up to 19% and 32% was observed with the pulse-delay when compared with the conventional photocuring technique at an irradiance of 0.5W/cm2 and 4W/cm2, respectively. The reduction occurred when the exposure time of the first pulse was greater than, but closer to, the gelation time (i.e., lower than the vitrification time) of the composite, regardless of the delay time used. Lower thermal shrinkage (contraction) during the post-curing time, rather than the stress relaxation during the delay time or lower degree of monomer conversion as claimed in the literature, is the cause of the reduction in the polymerization stress. SIGNIFICANCE: The study clarifies a long-standing confusion and controversy on the applicability of the pulse-delay photocuring technique for reducing the polymerization stress and promotes its potential clinical success for dental restorative composites.


Assuntos
Resinas Compostas , Estudos de Viabilidade , Teste de Materiais , Polimerização
2.
Dent Mater ; 36(2): 310-319, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31866065

RESUMO

OBJECTIVE: To provide conditions for the validity of the exposure reciprocity law as it pertains to the photopolymerization of dimethacrylate-based dental composites. METHODS: Composites made from different mass ratios of resin blends (Bis-GMA/TEGDMA and UDMA/TEGDMA) and silanized micro-sized glass fillers were used. All the composites used camphorquinone and ethyl 4-dimethylaminobenzoate as the photo initiator system. A cantilever beam-based instrument (NIST SRI 6005) coupled with NIR spectroscopy and a microprobe thermocouple was used to simultaneously measure the degree of conversion (DC), the polymerization stress (PS) due to the shrinkage, and the temperature change (TC) in real time during the photocuring process. The instrument has an integrated LED light curing unit providing irradiances ranging from 0.01W/cm2 to 4W/cm2 at a peak wavelength of 460nm (blue light). Vickers hardness of the composites was also measured. RESULTS: For every dental composite there exists a minimum radiant exposure required for an adequate polymerization (i.e., insignificant increase in polymerization with any further increase in the radiant exposure). This minimum predominantly depends on the resin viscosity of composite and can be predicted using an empirical equation established based on the test results. If the radiant exposure is above this minimum, the exposure reciprocity law is valid with respect to DC for high-fill composites (filler contents >50% by mass) while invalid for low-fill composites (that are clinically irrelevant). SIGNIFICANCE: The study promotes better understanding on the applicability of the exposure reciprocity law for dental composites. It also provides a guidance for altering the radiant exposure, with the clinically available curing light unit, needed to adequately cure the dental composite in question.


Assuntos
Resinas Compostas , Materiais Dentários , Bis-Fenol A-Glicidil Metacrilato , Teste de Materiais , Polimerização , Viscosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...