Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Ovarian Res ; 16(1): 76, 2023 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-37060101

RESUMO

BACKGROUND: Chronic low-grade inflammation and ovarian germline stem cells (OGSCs) aging are important reasons for the decline of ovarian reserve function, resulting in ovarian aging and infertility. Regulation of chronic inflammation is expected to promote the proliferation and differentiation of OGSCs, which will become a key means for maintaining and remodeling ovarian function. Our previous study demonstrated that Chitosan Oligosaccharides (Cos) promoted the OGSCs proliferation and remodelled the ovarian function through improving the secretion of immune related factors,but the mechanism remains unclear, and the role of macrophages, the important source of various inflammatory mediators in the ovary needs to be further studied. In this study, we used the method of macrophages and OGSCs co-culture to observe the effect and mechanism of Cos on OGSCs, and explore what contribution macrophages give during this process. Our finding provides new drug treatment options and methods for the prevention and treatment of premature ovarian failure and infertility. METHODS: We used the method of macrophages and OGSCs co-culture to observe the effect and mechanism of Cos on OGSCs, and explore the important contribution of macrophages in it. The immunohistochemical staining was used to locate the OGSCs in the mouse ovary. Immunofluorescent staining, RT-qPCR and ALP staining were used to identify the OGSCs. CCK-8 and western blot were used to evaluate the OGSCs proliferation. ß-galactosidase(SA-ß-Gal) staining and western blot were used to detect the changing of cyclin-dependent kinase inhibitor 1A(P21), P53, Recombinant Sirtuin 1(SIRT1) and Recombinant Sirtuin 3(SIRT3). The levels of immune factors IL-2, IL-10, TNF-α and TGF-ß were explored by using Western blot and ELISA. RESULTS: We found that Cos promoted OGSCs proliferation in a dose-and time-dependent manner, accompanied by IL-2, TNF-α increase and IL-10, TGF-ß decrease. Mouse monocyte-macrophages Leukemia cells(RAW) can also produce the same effect as Cos. When combined with Cos, it can enhance the proliferative effect of Cos in OGSCs, and further increase IL-2, TNF-α and further decrease IL-10, TGF-ß. The macrophages can enhance the proliferative effect of Cos in OGSCs is also associated with the further increase in IL-2, TNF-α and the further decrease in IL-10, TGF-ß. In this study, we determined that the anti-aging genes SIRT-1 and SIRT-3 protein levels were increased by Cos and RAW respectively, whereas the senescence-associated SA-ß-Gal and aging genes P21 and P53 were decreased. Cos and RAW had a protective effect on OGSCs delaying aging. Furthermore, RAW can further decrease the SA-ß-Gal and aging genes P21 and P53 by Cos, and further increase SIRT1 and SIRT3 protein levels in OGSCs by Cos. CONCLUSION: In conclusion, Cos and macrophages have synergistic effects on improving OGSCs function and delaying ovarian aging by regulating inflammatory factors.


Assuntos
Ovário , Sirtuína 3 , Animais , Camundongos , Feminino , Ovário/metabolismo , Interleucina-10 , Sirtuína 1/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Interleucina-2/metabolismo , Células-Tronco/metabolismo , Macrófagos/metabolismo , Inflamação/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Oligossacarídeos/metabolismo
2.
Front Immunol ; 14: 1086232, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36936973

RESUMO

Introduction: Polycystic Ovary Syndrome (PCOS) is the most common reproductive endocrine disorder among women of reproductive age, which is one of the main causes of anovulatory infertility. Even though the rapidly developed assisted reproductive technology (ART) could effectively solve fertility problems, some PCOS patients still have not obtained satisfactory clinical outcomes. The poor quality of oocytes caused by the abnormal follicular development of PCOS may directly contribute to the failure of ART treatment. Ovarian granulosa cells (GCs) are the most closely related cells to oocytes, and changes in their functional status have a direct impact on oocyte formation. Previous studies have shown that changes in the ovarian microenvironment, like oxidative stress and inflammation, may cause PCOS-related aberrant follicular development by impairing the physiological state of the GCs. Therefore, optimizing the ovarian microenvironment is a feasible method for enhancing the development potential of PCOS oocytes. Methods: In this study, we first detected the expression of inflammatory-related factors (TGF-ß1, IL-10, TNFα, IL-6) and oxidative stress-related factors (HIF-1α and VEGFA), as well as the proliferation ability and apoptosis level of GCs, which were collected from control patients (non-PCOS) and PCOS patients, respectively. Subsequently, human ovarian granulosa cell line (KGN) cells were used to verify the anti-inflammatory and anti-oxidative stress effects of chitosan oligosaccharide (COS) on GCs, as well as to investigate the optimal culture time and concentration of COS. The optimal culture conditions were then used to culture GCs from PCOS patients and control patients. Results: The results showed that GCs from PCOS patients exhibited obvious inflammation and oxidative stress and significantly reduced proliferation and increased apoptosis. Furthermore, COS can increase the expression of anti-inflammatory factors (TGF-ß1 and IL-10) and decrease the expression of pro-inflammatory factors (TNFα and IL-6), as well as promote the proliferation of GCs. Moreover, we found that COS can reduce the level of reactive oxygen species in GCs under oxidative stress by inhibiting the expression of HIF-1α and VEGFA and by suppressing the apoptosis of GCs induced by oxidative stress. Conclusion: We find that inflammation and oxidative stress exist in the GCs of PCOS patients, and COS can reduce these factors, thereby improving the function of GCs.


Assuntos
Quitosana , Síndrome do Ovário Policístico , Humanos , Feminino , Quitosana/farmacologia , Quitosana/metabolismo , Interleucina-10/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Síndrome do Ovário Policístico/tratamento farmacológico , Interleucina-6/metabolismo , Células da Granulosa/metabolismo , Estresse Oxidativo , Inflamação/metabolismo , Oligossacarídeos/farmacologia , Microambiente Tumoral
3.
J Ovarian Res ; 15(1): 79, 2022 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-35787298

RESUMO

The delay of ovarian aging and the fertility preservation of cancer patients are the eternal themes in the field of reproductive medicine. Acting as the pacemaker of female physiological aging, ovary is also considered as the principle player of cancer, cardiovascular diseases, cerebrovascular diseases, neurodegenerative diseases and etc. However, its aging mechanism and preventive measures are still unclear. Some researchers attempt to activate endogenous ovarian female germline stem cells (FGSCs) to restore ovarian function, as the most promising approach. FGSCs are stem cells in the adult ovaries that can be infinitely self-renewing and have the potential of committed differention. This review aims to elucidate FGSCs aging mechanism from multiple perspectives such as niches, immune disorder, chronic inflammation and oxidative stress. Therefore, the rebuilding nichs of FGSCs, regulation of immune dysfunction, anti-inflammation and oxidative stress remission are expected to restore or replenish FGSCs, ultimately to delay ovarian aging.


Assuntos
Células-Tronco de Oogônios , Envelhecimento , Proliferação de Células , Feminino , Humanos , Ovário , Células-Tronco
4.
Oxid Med Cell Longev ; 2022: 3145938, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35528524

RESUMO

Objective: This study elucidates the potential therapeutic targets and molecular mechanisms of KTC in the treatment of PCOS. Materials and Methods: Using the Traditional Chinese Medicine System Pharmacology Database and Analysis Platform (TCMSP), the active ingredients and potential targets of KTC were obtained. The Gene Expression Omnibus (GEO) database was used to find differentially expressed genes (DEGs) related to PCOS. Search the CTD, DisGeNet, genecards, NCBI, OMIM, and PharmGKB databases for therapeutic targets related to PCOS. The intersection of potential targets, DEGs, and therapeutic targets was submitted to perform bioinformatics analysis by R language. Finally, the analyses' core targets and their corresponding active ingredients were molecularly docked. Results: 88 potential therapeutic targets of KTC for PCOS were discovered by intersecting the potential targets, DEGs, and therapeutic targets. According to bioinformatics analysis, the mechanisms of KTC treatment for PCOS could be linked to IL-17 signaling route, p53 signaling pathway, HIF-1 signaling pathway, etc. The minimal binding energies of the 5 core targets and their corresponding ingredients were all less than -6.5. Further research found that quercetin may replace KTC in the treatment of PCOS. Discussion and Conclusions. We explored the active ingredients and molecular mechanisms of KTC in the treatment of PCOS and found that quercetin may be the core ingredient of KTC in the treatment of PCOS.


Assuntos
Medicamentos de Ervas Chinesas , Síndrome do Ovário Policístico , Biologia Computacional , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Feminino , Humanos , Medicina Tradicional Chinesa , Simulação de Acoplamento Molecular , Farmacologia em Rede , Síndrome do Ovário Policístico/tratamento farmacológico , Síndrome do Ovário Policístico/genética , Quercetina/farmacologia , Quercetina/uso terapêutico
5.
Oxid Med Cell Longev ; 2022: 4247042, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35401926

RESUMO

Oocyte maturation disorder and decreased quality are the main causes of infertility in women, and granulosa cells (GCs) provide the only microenvironment for oocyte maturation through autocrine and paracrine signaling by steroid hormones and growth factors. However, chronic inflammation and oxidative stress caused by ovarian hypoxia are the largest contributors to ovarian aging and GC dysfunction. Therefore, the amelioration of chronic inflammation and oxidative stress is expected to be a pivotal method to improve GC function and oocyte quality. In this study, we detected the protective effect of chitosan oligosaccharides (COS), on hydrogen peroxide- (H2O2-) stimulated oxidative damage in a human ovarian granulosa cell line (KGN). COS significantly increased cell viability, mitochondrial function, and the cellular glutathione (GSH) content and reduced apoptosis, reactive oxygen species (ROS) content, and the levels of 8-hydroxy-2'-deoxyguanosine (8-OHdG), 4-hydroxynonenal (4-HNE), hypoxia-inducible factor-1α (HIF-1α), and vascular endothelial-derived growth factor (VEGF) in H2O2-stimulated KGN cells. COS treatment significantly increased levels of the TGF-ß1 and IL-10 proteins and decreased levels of the IL-6 protein. Compared with H2O2-stimulated KGN cells, COS significantly increased the levels of E2 and P4 and decreased SA-ß-gal protein expression. Furthermore, COS caused significant inactivation of the HIF-1α-VEGF pathway in H2O2-stimulated KGN cells. Moreover, inhibition of this pathway enhanced the inhibitory effects of COS on H2O2-stimulated oxidative injury and apoptosis in GCs. Thus, COS protected GCs from H2O2-stimulated oxidative damage and apoptosis by inactivating the HIF-1α-VEGF signaling pathway. In the future, COS might represent a therapeutic approach for ameliorating disrupted follicle development.


Assuntos
Quitosana , Peróxido de Hidrogênio , Quitosana/farmacologia , Feminino , Glutationa/metabolismo , Células da Granulosa/metabolismo , Humanos , Peróxido de Hidrogênio/farmacologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Inflamação/metabolismo , Oligossacarídeos/metabolismo , Oligossacarídeos/farmacologia , Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular/metabolismo
6.
Adv Sci (Weinh) ; 9(12): e2102220, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35218328

RESUMO

Intrauterine adhesions (IUAs) caused by mechanical damage or infection increase the risk of infertility in women. Although numerous physical barriers such as balloon or hydrogel are developed for the prevention of IUAs, the therapeutic efficacy is barely satisfactory due to limited endometrial healing, which may lead to recurrence. Herein, a second near-infrared (NIR-II) light-responsive shape memory composite based on the combination of cuprorivaite (CaCuSi4 O10 ) nanosheets (CUP NSs) as photothermal conversion agents and polymer poly(d,l-lactide-co-trimethylene carbonate) (PT) as shape memory building blocks is developed. The as-prepared CUP/PT composite possesses excellent shape memory performance under NIR-II light, and the improved operational feasibility as an antiadhesion barrier for the treatment of IUAs. Moreover, the released ions (Cu, Si) can stimulate the endometrial regeneration due to the angiogenic bioactivity. This study provides a new strategy to prevent IUA and restore the injured endometrium relied on shape memory composite with enhanced tissues reconstruction ability.


Assuntos
Endométrio , Doenças Uterinas , Cobre , Endométrio/patologia , Feminino , Humanos , Regeneração , Silicatos/uso terapêutico , Aderências Teciduais/tratamento farmacológico , Aderências Teciduais/patologia , Aderências Teciduais/prevenção & controle , Doenças Uterinas/tratamento farmacológico , Doenças Uterinas/patologia , Doenças Uterinas/prevenção & controle
7.
Cell Physiol Biochem ; 50(1): 214-232, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30336465

RESUMO

The ovary is surrounded by a whitish layer of mesodermally derived ovarian surface epithelium (OSE) that lines the intraembryonic celom and comprises simple squamous to cuboidal to low pseudostratified columnar epithelial cells. Its integrity is maintained by simple desmosomes, incomplete tight junctions, several integrins and cadherins. Recent research has found that ovarian stem cells (OSCs) exist within the OSE and may be responsible for both neo-oogenesis and ovarian cancer during adult life. The factors determining whether OSCs undergo neo-oogenesis or ovarian cancer are of great interest to researchers and clinicians. Accumulating evidence suggests the mechanism for the decision of ovarian surface epithelial stem cells to undergo either neo-oogenesis or ovarian cancer transformation may comprise both internal and external factors. Here, we review recent progress on how the internal factors, including genes, signaling pathways and lncRNA: OSE stem cells mediate the development and progression of ovarian cancer through various genes such as p53, KRAS, BRAF, and PTEN, and mutations in PIK3CA, and through various signaling pathways, including TGF-B pathway, Wnt signaling pathway, Notch signaling pathway, NF-kB signal transducer and transcriptional activator 3 (STAT3) pathway and Hedghog (HH) pathway. A series of expressions of IncRNA have changed in epithelial ovarian cancer tissues and cell lines compared to normal ovarian tissues and cell lines. As well as external factors, including incessant ovulation, gonadotropin and chronicinflammation: Frequent ovulation, without long-term dormancy, increases the risk of illness, because repeated rupture and repair at the ovulation site provides an opportunity for the accumulation of genetic aberrations; FSH affects all aspects of ovarian cancer metastasis, such as inhibition of apoptosis, through Induction of increased expression of VEGFA (VEGF) to support tumor growth, promote vascular growth, and possibly alter certain oncogenic pathways, thereby promoting proliferation and invasive phenotypic inflammation contributes to tumorigenesis, which help determine whether OSCs undergo neo-oogenesis or ovarian tumorigenesis. Understanding this issue is critical for developing novel strategies for premature ovarian failure and ovarian cancer prevention and therapy.


Assuntos
Neoplasias Epiteliais e Glandulares/patologia , Células-Tronco Neoplásicas/metabolismo , Neoplasias Ovarianas/patologia , Carcinoma Epitelial do Ovário , Transformação Celular Neoplásica , Feminino , Hormônio Foliculoestimulante/metabolismo , Humanos , Neoplasias Epiteliais e Glandulares/metabolismo , Neoplasias Ovarianas/metabolismo , RNA Longo não Codificante/metabolismo , Transdução de Sinais/genética , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...