Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Adv Sci (Weinh) ; : e2401527, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39007192

RESUMO

Myocardial Infarction (MI) is a leading cause of death worldwide. Metabolic modulation is a promising therapeutic approach to prevent adverse remodeling after MI. However, whether material-derived cues can treat MI through metabolic regulation is mainly unexplored. Herein, a Cu2+ loaded casein microgel (CuCMG) aiming to rescue the pathological intramyocardial metabolism for MI amelioration is developed. Cu2+ is an important ion factor involved in metabolic pathways, and intracardiac copper drain is observed after MI. It is thus speculated that intramyocardial supplementation of Cu2+ can rescue myocardial metabolism. Casein, a milk-derived protein, is screened out as Cu2+ carrier through molecular-docking based on Cu2+ loading capacity and accessibility. CuCMGs notably attenuate MI-induced cardiac dysfunction and maladaptive remodeling, accompanied by increased angiogenesis. The results from unbiased transcriptome profiling and oxidative phosphorylation analyses support the hypothesis that CuCMG prominently rescued the metabolic homeostasis of myocardium after MI. These findings enhance the understanding of the design and application of metabolic-modulating biomaterials for ischemic cardiomyopathy therapy.

2.
Eur J Med Chem ; 274: 116538, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38823264

RESUMO

DNA methyltransferase 1 (DNMT1) is the primary enzyme responsible for maintaining DNA methylation patterns during cellular division, crucial for cancer development by suppressing tumor suppressor genes. In this study, we retained the phthalimide structure of N-phthaloyl-l-tryptophan (RG108) and substituted its indole ring with nitrogen-containing aromatic rings of varying sizes. We synthesized 3-(9H-carbazol-9-yl)-2-(1,3-dioxoisoindolin-2-yl)propanoic acids and confirmed them as DNMT1 inhibitors through protein affinity testing, radiometric method using tritium labeled SAM, and MTT assay. Preliminary structure-activity relationship analysis revealed that introducing substituents on the carbazole ring could enhance inhibitory activity, with S-configuration isomers showing greater activity than R-configuration ones. Notably, S-3-(3,6-di-tert-butyl-9H-carbazol-9-yl)-2-(1,3-dioxoisoindolin-2-yl)propanoic acid (7r-S) and S-3-(1,3,6-trichloro-9H-carbazol-9-yl)-2-(1,3-dioxoisoindolin-2-yl)propanoic acid (7t-S) exhibited significant DNMT1 enzyme inhibition activity, with IC50 values of 8.147 µM and 0.777 µM, respectively (compared to RG108 with an IC50 above 250 µM). Moreover, they demonstrated potential anti-proliferative activity on various tumor cell lines including A2780, HeLa, K562, and SiHa. Transcriptome analysis and KEGG pathway enrichment of K562 cells treated with 7r-S and 7t-S identified differentially expressed genes (DEGs) related to apoptosis and cell cycle pathways. Flow cytometry assays further indicated that 7r-S and 7t-S induce apoptosis in K562 cells and arrest them in the G0/G1 phase in a concentration-dependent manner. Molecular docking revealed that 7t-S may bind to the methyl donor S-adenosyl-l-methionine (SAM) site in DNMT1 with an orientation opposite to RG108, suggesting potential for deeper penetration into the DNMT1 pocket and laying the groundwork for further modifications.


Assuntos
Carbazóis , Proliferação de Células , DNA (Citosina-5-)-Metiltransferase 1 , Inibidores Enzimáticos , Humanos , Relação Estrutura-Atividade , Carbazóis/farmacologia , Carbazóis/química , Carbazóis/síntese química , DNA (Citosina-5-)-Metiltransferase 1/antagonistas & inibidores , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/síntese química , Proliferação de Células/efeitos dos fármacos , Estrutura Molecular , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Ensaios de Seleção de Medicamentos Antitumorais , Relação Dose-Resposta a Droga , Indóis/farmacologia , Indóis/química , Indóis/síntese química , Simulação de Acoplamento Molecular , Linhagem Celular Tumoral , Ftalimidas , Triptofano/análogos & derivados
3.
Regen Biomater ; 11: rbad103, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38173776

RESUMO

Metal ions participate in many metabolic processes in the human body, and their homeostasis is crucial for life. In cardiovascular diseases (CVDs), the equilibriums of metal ions are frequently interrupted, which are related to a variety of disturbances of physiological processes leading to abnormal cardiac functions. Exogenous supplement of metal ions has the potential to work as therapeutic strategies for the treatment of CVDs. Compared with other therapeutic drugs, metal ions possess broad availability, good stability and safety and diverse drug delivery strategies. The delivery strategies of metal ions are important to exert their therapeutic effects and reduce the potential toxic side effects for cardiovascular applications, which are also receiving increasing attention. Controllable local delivery strategies for metal ions based on various biomaterials are constantly being designed. In this review, we comprehensively summarized the positive roles of metal ions in the treatment of CVDs from three aspects: protecting cells from oxidative stress, inducing angiogenesis, and adjusting the functions of ion channels. In addition, we introduced the transferability of metal ions in vascular reconstruction and cardiac tissue repair, as well as the currently available engineered strategies for the precise delivery of metal ions, such as integrated with nanoparticles, hydrogels and scaffolds.

4.
ACS Nano ; 17(13): 12072-12086, 2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37363813

RESUMO

Tissue engineering raised a high requirement to control cell distribution in defined materials and structures. In "ink"-based bioprintings, such as 3D printing and photolithography, cells were associated with inks for spatial orientation; the conditions suitable for one ink are hard to apply on other inks, which increases the obstacle in their universalization. The Magneto-Archimedes effect based (Mag-Arch) strategy can modulate cell locomotion directly without impelling inks. In a paramagnetic medium, cells were repelled from high magnetic strength zones due to their innate diamagnetism, which is independent of substrate properties. However, Mag-Arch has not been developed into a powerful bioprinting strategy as its precision, complexity, and throughput are limited by magnetic field distribution. By controlling the paramagnetic reagent concentration in the medium and the gaps between magnets, which decide the cell repelling scope of magnets, we created simultaneously more than a hundred micrometer scale identical assemblies into designed patterns (such as alphabets) with single/multiple cell types. Cell patterning models for cell migration and immune cell adhesion studies were conveniently created by Mag-Arch. As a proof of concept, we patterned a tumor/endothelial coculture model within a covered microfluidic channel to mimic epithelial-mesenchymal transition (EMT) under shear stress in a cancer pathological environment, which gave a potential solution to pattern multiple cell types in a confined space without any premodification. Overall, our Mag-Arch patterning presents an alternative strategy for the biofabrication and biohybrid assembly of cells with biomaterials featured in controlled distribution and organization, which can be broadly employed in tissue engineering, regenerative medicine, and cell biology research.


Assuntos
Técnicas de Cultura de Células , Tinta , Engenharia Tecidual/métodos , Comunicação Celular , Técnicas Analíticas Microfluídicas , Técnicas de Cocultura , Movimento Celular , Magnetismo , Humanos , Técnicas de Cultura de Células/métodos
5.
Biomater Res ; 27(1): 6, 2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36737833

RESUMO

BACKGROUND: Post-traumatic massive hemorrhage demands immediately available first-aid supplies with reduced operation time and good surgical compliance. In-situ crosslinking gels that are flexibly adapting to the wound shape have a promising potential, but it is still hard to achieve fast gelation, on-demand adhesion, and wide feasibility at the same time. METHODS: A white-light crosslinkable natural milk-derived casein hydrogel bioadhesive is presented for the first time. Benefiting from abundant tyrosine residues, casein hydrogel bioadhesive was synthesized by forming di-tyrosine bonds under white light with a ruthenium-based catalyst. We firstly optimized the concentration of proteins and initiators to achieve faster gelation and higher mechanical strength. Then, we examined the degradation, cytotoxicity, tissue adhesion, hemostasis, and wound healing ability of the casein hydrogels to study their potential to be used as bioadhesives. RESULT: Rapid gelation of casein hydrogel is initiated with an outdoor flashlight, a cellphone flashlight, or an endoscopy lamp, which facilitates its usage during first-aid and minimally invasive operations. The rapid gelation enables 3D printing of the casein hydrogel and excellent hemostasis even during liver hemorrhage due to section injury. The covalent binding between casein and tissue enables robust adhesion which can withstand more than 180 mmHg blood pressure. Moreover, the casein-based hydrogel can facilitate post-traumatic wound healing caused by trauma due to its biocompatibility. CONCLUSION: Casein-based bioadhesives developed in this study pave a way for broad and practical application in emergency wound management.

6.
Acta Biomater ; 153: 386-398, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36116725

RESUMO

Weak tissue adhesion remains a major challenge in clinical translation of microneedle patches. Mimicking the structural features of honeybee stingers, stiff polymeric microneedles with unidirectionally backward-facing barbs were fabricated and embedded into various elastomer films to produce self-interlocking microneedle patches. The spirality of the barbing pattern was adjusted to increase interlocking efficiency. In addition, the micro-bleeding caused by microneedle puncturing adhered the porous surface of the patch substrate to the target tissue via coagulation. In the demonstrative application of myocardial infarction treatment, the bioinspired microneedle patches firmly fixed on challenging beating hearts, significantly reduced cardiac wall stress and strain in the infarct, and maintained left ventricular function and morphology. In addition, the microneedle patch was minimally invasively implanted onto beating porcine heart in 10 minutes, free of sutures and adhesives. Therefore, the honeybee stinger-inspired microneedles could provide an adaptive and convenient means to implant patches for various medical applications. STATEMENT OF SIGNIFICANCE: Adhesion between tissue and microneedle patches with smooth microneedles is usually weak. We introduce a novel barbing method of fabricating unidirectionally backward facing barbs with controllable spirality on the microneedles on microneedle patches. The microneedle patches self-interlock on mechanically dynamic beating hearts, similar to honeybee stingers. The micro-bleeding and coagulation on the porous surface provide additional adhesion force. The microneedle patches attenuate left ventricular remodeling via mechanical support and are compatible with minimally invasive implantation.


Assuntos
Infarto do Miocárdio , Agulhas , Abelhas , Suínos , Animais , Microinjeções , Sistemas de Liberação de Medicamentos , Infarto do Miocárdio/terapia , Punções
7.
Mol Ther ; 28(3): 901-913, 2020 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-31991109

RESUMO

Esophageal squamous cell carcinoma (ESCC) is a predominant cancer type in developing countries such as China, where ESCC accounts for approximately 90% of esophageal malignancies. Lacking effective and targeted therapy contributes to the poor 5-year survival rate. Recent studies showed that about 30% of ESCC cases have high levels of SOX2. Herein, we aim to target this transcription factor with aptamer. We established a peptide aptamer library and then performed an unbiased screening to identify several peptide aptamers including P42 that can bind and inhibit SOX2 downstream target genes. We further found that P42 overexpression or incubation with a synthetic peptide 42 inhibited the proliferation, migration, and invasion of ESCC cells. Moreover, peptide 42 treatment inhibited the growth and metastasis of ESCC xenografts in mouse and zebrafish. Further analysis revealed that P42 overexpression led to alternations in the levels of proteins that are important for the proliferation and migration of ESCC cells. Taken together, our study identified the peptide 42 as a key inhibitor of SOX2 function, reducing the proliferation and migration of ESCC cells in vitro and in vivo, and thereby offering a potential therapy against ESCC.


Assuntos
Antineoplásicos/farmacologia , Aptâmeros de Peptídeos/farmacologia , Fatores de Transcrição SOXB1/antagonistas & inibidores , Animais , Aptâmeros de Peptídeos/química , Aptâmeros de Peptídeos/metabolismo , Biomarcadores Tumorais , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Ensaios de Seleção de Medicamentos Antitumorais , Carcinoma de Células Escamosas do Esôfago/tratamento farmacológico , Carcinoma de Células Escamosas do Esôfago/metabolismo , Carcinoma de Células Escamosas do Esôfago/mortalidade , Humanos , Camundongos , Terapia de Alvo Molecular , Prognóstico , Ligação Proteica , Técnica de Seleção de Aptâmeros , Fatores de Transcrição SOXB1/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Peixe-Zebra
8.
J Med Virol ; 92(12): 3617-3627, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31994741

RESUMO

The treatment of tumors with oncolytic viruses is an important cancer immunotherapy strategy. Interleukin-15 (IL-15) can enhance the antitumor effect of natural killer cells and T cells. An oncolytic herpes simplex type II virus (oHSV2-mIL-15CherryFP) expressing mouse IL-15 was constructed using the CRISPR/Cas9 system, and its antitumor activity in vitro and in vivo was evaluated. In vitro, the mouse interleukin-15 (mIL-15) present in the culture supernatant expressed by oHSV2-mIL-15CherryFP was able to enhance the killing of CT26-GFP tumor cells by T cells. In addition, the intratumoral injection of oHSV2-mIL-15CherryFP inhibited tumor growth in the CT26-iRFP and BGC823-iRFP model. These results indicate that the use of oncolytic herpes simplex virus expressing IL-15 may be a potential therapeutic strategy in tumor immunotherapy.

9.
J Transl Med ; 17(1): 204, 2019 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-31215436

RESUMO

BACKGROUND: Neutrophil gelatinase-associated lipocalin (NGAL) is a promising biomarker of early diagnosis and prediction for acute kidney injury (AKI). However, the current program for NGAL detection is not extensively applied in clinics due to the high expense of antibodies. Nucleic acid aptamers are single-strand DNAs or RNAs which could bind to targets with high specificity and affinity, and they have been widely used in the diagnosis and therapy for multiple diseases. It is valuable for us to develop a new method for NGAL detection using aptamers instead of antibodies to achieve increased efficiency and decreased cost. METHODS: Nucleic acid aptamers against NGAL were obtained after SELEX process using magnetic beads, and an enzyme-linked aptamer analysis (ELAA), which can be widely used in clinical diagnosis at low cost, were successfully established. The feasibility of ELAA was further validated with urine samples harvested from 43 AKI patients and 30 healthy people. RESULTS: Three candidate aptamers, including NA36, NA42 and NA53, were obtained after 8 rounds of SELEX process with magnetic beads and verified by quantitative polymerase chain reaction (qPCR), and the Kd value of each aptamer was 43.59, 66.55 and 32.52 nM, respectively. Moreover, the linear relationship was consistent at the range of 125-4000 ng/mL, and the detection limit of ELAA assay was 30.45 ng/mL. We also found that NGAL could be exclusively detected with NA53, and no cross-reaction between NA53 and human albumin or globulin occurred, the coefficient of variation (CV) between inner-plate and inter-plate was less than 15%, and the recovery rate was between 80 and 110%. Moreover, the sensitivity and specificity of ELAA assay in this study are 100% and 90%, respectively. Consistently, these results could also diagnose whether the occurrence of AKI in lots of patients, which has been demonstrated with the ELAA method we established after using NA53. CONCLUSIONS: Taken together, NA53, the best candidate aptamer targeting NGAL protein, can be applied in clinical testing.


Assuntos
Injúria Renal Aguda/diagnóstico , Aptâmeros de Nucleotídeos/uso terapêutico , Biomarcadores/análise , DNA de Cadeia Simples/química , Técnicas de Diagnóstico Urológico , Lipocalina-2/análise , Técnica de Seleção de Aptâmeros/métodos , Injúria Renal Aguda/sangue , Adolescente , Adulto , Idoso , Aptâmeros de Nucleotídeos/síntese química , Aptâmeros de Nucleotídeos/química , Biomarcadores/sangue , Estudos de Casos e Controles , Células Cultivadas , Ensaios Clínicos como Assunto/métodos , DNA de Cadeia Simples/síntese química , DNA de Cadeia Simples/uso terapêutico , Diagnóstico Precoce , Feminino , Células HEK293 , Humanos , Limite de Detecção , Lipocalina-2/sangue , Magnetismo , Masculino , Pessoa de Meia-Idade , Sensibilidade e Especificidade , Adulto Jovem
10.
J Cell Physiol ; 233(5): 3855-3866, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-28777465

RESUMO

The esophagus is a pivotal organ originating from anterior foregut that links the mouth and stomach. Moreover, its development involves precise regulation of multiple signal molecules and signal transduction pathways. After abnormal regulation of these molecules in the basal cells of the esophagus occurs, multiple diseases, including esophageal atresia with or without tracheoesophageal fistula, Barrett esophagus, gastroesophageal reflux, and eosinophilic esophagitis, will take place as a result. Furthermore, expression changes of signal molecules or signal pathways in basal cells and the microenvironment around basal cells both can initiate the switch of malignant transformation. In this review, we highlight the molecular events underlying the transition of normal development to multiple esophageal diseases. Additionally, the animal models of esophageal development and related diseases, challenges, and strategies are extensively discussed.


Assuntos
Esôfago/metabolismo , Refluxo Gastroesofágico/metabolismo , Metástase Neoplásica/patologia , Neoplasias/patologia , Células-Tronco/citologia , Animais , Modelos Animais de Doenças , Esôfago/patologia , Refluxo Gastroesofágico/patologia , Humanos , Neoplasias/metabolismo , Células-Tronco/metabolismo
11.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 33(3): 342-346, 2017 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-28274313

RESUMO

Objective To prepare a lentiviral vector expressing LLGL2 and establish KYSE450 and TE-1 cell lines for the stable expression of LLGL2. Methods The full-length LLGL2 sequence was amplified by high-fidelity PCR, and then it was inserted into pCDH-CMV-IRES-GFP-EF1-Puro vectors. The recombinant plasmid was confirmed by double enzyme digestion and sequencing. After co-infection of pCDH-CMV-LLGL2-IRES- GFP-EF1-Puro with vesicular stomatitis virus glycoprotein (VSVG) and PHR into HEK293T cells, the lentivirus was harvested and used for infecting esophageal squamous cell carcinoma cell lines including KYSE450 and TE-1 cells. These two cell lines infected with the lentivirus were screened with puromycin, and the stable cell lines were further confirmed with green fluoresence and Western blotting. Results Dual-enzyme digestion and sequencing confirmed that the pCDH-CMV-LLGL2-IRES-GFP-EF1-Puro vector, a lentiviral expression vector for the overexpression of LLGL2, was successfully constructed through high-fidelity PCR and ligation. Western blotting showed the increased expression level of LLGL2 protein in KYSE450 and TE-1 stable cell lines compared with the controls. Conclusion The experiment successfully established KYSE450 and TE-1 stable cell lines for the overexpression of LLGL2.


Assuntos
Carcinoma de Células Escamosas/genética , Linhagem Celular Tumoral , Proteínas do Citoesqueleto/genética , Neoplasias Esofágicas/genética , Carcinoma de Células Escamosas/metabolismo , Proteínas do Citoesqueleto/metabolismo , Neoplasias Esofágicas/metabolismo , Carcinoma de Células Escamosas do Esôfago , Vetores Genéticos/genética , Vetores Genéticos/metabolismo , Humanos , Lentivirus/genética , Lentivirus/metabolismo , Transfecção
12.
Springerplus ; 5(1): 1967, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27917343

RESUMO

BACKGROUND: Psychiatric diseases severely affect the quality of patients' lives and bring huge economic pressure to their families. Also, the great phenotypic variability among these patients makes it difficult to investigate the pathogenesis. Nowadays, bioinformatics is hopeful to be used as an effective tool for the diagnosis of psychiatric disorders, which can identify sensitive biomarkers and explore associated signaling pathways. METHODS: In this study, we performed an integrated bioinformatic analysis on 1945 mental-associated proteins including 91 secreted proteins and 593 membrane proteins, which were screened from the Universal Protein Resource (Uniport) database. Then the function and pathway enrichment analyses, ontological classification, and constructed PPI network were executed. RESULTS: Our present study revealed that the majority of mental proteins were closely related to metabolic processes and cellular processes. We also identified some significant molecular biomarkers in the progression of mental disorders, such as HRAS, ALS2, SLC6A1, SLC39A12, SIL1, IDUA, NEPH2 and XPO1. Furthermore, it was found that hub proteins, such as COMT, POMC, NPS and BDNF, might be the potential targets for mental disorders therapy. Finally, we demonstrated that psychiatric disorders may share the same signaling pathways with cancers, involving ESR1, BCL2 and MAPK3. CONCLUSION: Our data are expected to contribute to explaining the possible mechanisms of psychiatric diseases and providing a useful reference for the diagnosis and therapy of them.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...