Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38062728

RESUMO

In recent decades, cultured meat has received considerable interest as a sustainable alternative to traditional meat products, showing promise for addressing the inherent problems associated with conventional meat production. However, current limitations on the scalability of production and extremely high production costs have prevented their widespread adoption. Therefore, it is important to develop novel engineering strategies to overcome the current limitations in large-scale cultured meat production. Such engineering considerations have the potential for advancements in cultured meat production by providing innovative and effective solutions to the prevailing challenges. In this review, we discuss how engineering strategies have been utilized to advance cultured meat technology by categorizing the production processes of cultured meat into three distinct steps: (1) cell preparation; (2) cultured meat fabrication; and (3) cultured meat maturation. For each step, we provide a comprehensive discussion of the recent progress and its implications. In particular, we focused on the engineering considerations involved in each step of cultured meat production, with specific emphasis on large-scale production.

2.
ACS Biomater Sci Eng ; 9(2): 968-977, 2023 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-36701173

RESUMO

Developing a scaffold for efficient and functional bone regeneration remains challenging. To accomplish this goal, a "scaffold-on-a-chip" device was developed as a platform to aid with the evaluation process. The device mimics a microenvironment experienced by a transplanted bone scaffold. The device contains a circular space at the center for scaffold insert and microfluidic channel that encloses the space. Such a design allows for monitoring of cell behavior at the blood-scaffold interphase. MC3T3-E1 cells were cultured with three different types of scaffold inserts to test its capability as an evaluation platform. Cellular behaviors, including migration, morphology, and osteogenesis with each scaffold, were analyzed through fluorescence images of live/dead assay and immunocytochemistry. Cellular behaviors, such as migration, morphology, and osteogenesis, were evaluated. The results revealed that our platform could effectively evaluate the osteoconductivity and osteoinductivity of scaffolds with various properties. In conclusion, our proposed platform is expected to replace current in vivo animal models as a highly relevant in vitro platform and can contribute to the fundamental study of bone regeneration.


Assuntos
Osteogênese , Alicerces Teciduais , Animais , Alicerces Teciduais/química , Regeneração Óssea , Impressão Tridimensional , Dispositivos Lab-On-A-Chip
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...