Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38879772

RESUMO

AIMS: This study aimed to examine the associations of FTO expression with prognosis, tumor microenvironment (TME), immune cell infiltration, immune checkpoint genes, and relevant signaling pathways in GC. Furthermore, the relationship between FTO and TGF-ß was studied in GC. METHODS: The mRNA expression and clinical survival data of GC samples were obtained from The Cancer Genome Atlas Stomach Adenocarcinoma (TCGA-STAD). TIMER2, TNM plot, and GEPIA database were used to analyze FTO expression. The associations of FTO with prognosis and clinicopathologic features were assessed using the Kaplan-Meier plotter and UALCAN database, respectively. The R software was employed to analyze its related signaling pathways and the associations with TME, immune cell infiltration, and immune checkpoint genes. GEPIA and ENCORI were used to examine the association of FTO with TGF-ß expression. The SRAMP website was utilized to predict m6A modification of TGF-ß. IHC, Western blot, and qPCR were used to analyze the expression levels of FTO and TGF-ß in clinical gastric cancer tissue samples or gastric cancer cell lines. In addition, a m6A RNA methylation assay kit was used to determine m6A levels in gastric cancer cells. RESULTS: FTO mRNA and protein levels were significantly elevated in GC compared to normal gastric tissues. Kaplan-Meier survival analysis suggested that upregulated FTO was associated with a worse prognosis in GC. Upregulated FTO was markedly correlated with differentiation degree, lymph node metastasis, and clinical TNM stage. GO and KEGG pathway analyses revealed that FTO-associated molecules were enriched in neuroactive ligand-receptor interaction, calcium signaling, PI3k-Akt signaling, cAMP signaling pathways, and TGF-ß signaling pathways, among others. The TME score was remarkably higher in the high-FTO group than in the low-FTO group. Furthermore, FTO expression had positive correlations with different types of immune cells and immune checkpoint genes. Moreover, FTO may regulate TGF-ß in an m6A RNA modification manner in GC. CONCLUSION: FTO may become an independent predictive prognostic biomarker correlating with TME, immune cell infiltration, and immune checkpoint genes in gastric cancer and might influence GC progression by regulating TGF-ß expression.

2.
Pharmaceuticals (Basel) ; 15(12)2022 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-36558938

RESUMO

Immune checkpoint blockade (ICB) is currently considered to be an important therapeutic method, which obtained FDA approval for clinical use in gastric cancer in 2017. As a new mechanism, it was found that the effect of αPDL1 could be improved by blocking the TGF-ß1 signaling pathway, which converts the tumor immune microenvironment from the "immune-excluded phenotype" to the "immune-inflamed phenotype". Based on this phenomenon, this project was designed to prepare TGF-ß1-siRNA-loaded PEG-PCL nanoparticles conjugated to αPDL1 (siTGF-ß1-αPDL1-PEG-PCL) since we have linked similar antibodies to PEG-PCL previously. Therefore, MFC tumor-engrafted mice were established to simulate the biological characteristics of converting the phenotype of the immune microenvironment, and to study the anti-tumor effect and possible molecular mechanism. In this study, αPDL1 antibody conjugates markedly increased the cell uptake of NPs. The produced αPDL1-PEG-PCL NPs efficiently reduced the amounts of TGF-ß1 mRNA in MFC cells, converting the immune microenvironment of MFC tumors engrafted mice from the "immune-excluded phenotype" to the "immune-inflamed phenotype". PDL1-harboring gastric cancer had increased susceptibility to αPDL1. The value of this drug-controlled release system targeting the tumor microenvironment in immune checkpoint therapy of gastric cancer would provide a scientific basis for clinically applying nucleic acid drugs.

3.
Front Genet ; 13: 903393, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35677557

RESUMO

This study aimed to explore an immune response-related gene signature to predict the clinical prognosis and tumor immunity of stomach adenocarcinomas (STAD). Based on the expression and clinical data of STAD in the TCGA database, the immune cell infiltration status was evaluated using CIBERSORT and ESTIMATE methods. Samples were grouped into "hot" and "cold" tumors based on immune cell infiltration status and consensus clustering. The infiltration abundance of activated memory CD4 T cells and CD8 T cells had a significant effect on the overall survival of STAD patients. Among the three clusters, cluster 2 had a higher immune score and a significantly higher abundance of CD8 T cells and activated memory CD4 T cells were assigned as a hot tumor, while cluster 1 and 3 were assigned as a cold tumor. DEGs between hot and cold tumors were mainly enriched in immune-related biological processes and pathways. Total of 13 DEGs were related to the overall survival (OS). After the univariate and multivariable Cox regression analysis, three signature genes (PEG10, DKK1, and RGS1) was identified to establish a prognostic model. Patients with the high-risk score were associated with worse survival, and the risk score had an independent prognostic value. Based on TIMER online tool, the infiltration levels of six immune cell types showed significant differences among different copy number statuses of PEG10, DKK1, and RGS1. In this study, an immune-related prognostic model containing three genes was established to predict survival for STAD patients.

4.
Mol Ther Oncolytics ; 24: 148-159, 2022 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-35024441

RESUMO

The anticancer effects of immune checkpoint inhibitors (ICIs) have been widely examined recently. Although ICIs have been progressively improved for successful gastric cancer treatment, different trials of ICIs such as pembrolizumab and nivolumab have yielded widely variable response rates. Strategies to further improve the efficacy of ICIs are still needed. Previous studies have shown that de novo DNA methylation is acquired by PD1+CD8+ tumor-infiltrating T cells (TILs), which cause a hierarchical downregulation of cytokines such as interferon-γ (IFN-γ). The epigenetic agent 5-Aza-2'-deoxycytidine (DAC) blocks de novo DNA methylation in activated PD1+CD8+ TILs. Such a feature might help enhance the anti-tumor effect of immune checkpoint blockade (ICB) treatment. In this study, polyethylene glycol-poly(ε-caprolactone) (PEG-PCL) nanoparticles (NPs) were linked to the anti-programmed death-1 monoclonal antibody nivolumab to yield αPD1-NPs for targeting TILs with PD1 overexpression using DAC. In addition, the NPs increased DAC stability and improved IFN-γ secretion and the anti-tumor effect of ICB in vitro. Therefore, targeted delivery of DAC reverses the exhaustion of PD1+CD8+ TILs and improves T cell responses and the treatment effect of ICB. These findings suggest that nivolumab-NPs are a potential tool for the delivery of epigenetic drugs, which could enhance the anti-tumor effect of ICB in gastric cancer.

5.
Aging (Albany NY) ; 13(7): 9766-9779, 2021 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-33744848

RESUMO

As biomolecules of great clinical value, lncRNAs play a crucial role as regulators in the processes of tumor origin, metastasis, and recurrence. Thus, lncRNAs are urgently needed for research in gastric cancer. We elucidated the specific function of OGFRP1, both in vitro and in vivo. OGFRP1 was expressed at abnormally high levels in gastric cancer samples (n = 408) compared to normal samples (n = 211). Similar results were obtained in 30 clinical case samples. Interference of OGFRP1 markedly blocked cell proliferation and migration, and it induced cell cycle arrest and the apoptosis of gastric cancer cells in vitro. Phosphorylation of AKT was inhibited in cells transfected with OGFRP1 siRNA, as compared to their control cells. The in vivo results further confirmed the antitumor effects of OGFRP1 knockdown on gastric cancer. Decreases in tumor volume (104.23±62.27 mm3) and weight (0.1006±0.0488 g) in nude mice were observed during the OGFRP1 interference, as compared with the control group (418.96±211.96 mm3 and 0.2741±0.0769 g). OGFRP1 promotes tumor progression through activating the AKT/mTOR pathway. Our findings provide a new potential target for the clinical treatment of human gastric cancer.


Assuntos
Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Longo não Codificante/metabolismo , Neoplasias Gástricas/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Animais , Linhagem Celular Tumoral , Proliferação de Células , Progressão da Doença , Mucosa Gástrica/metabolismo , Técnicas de Silenciamento de Genes , Humanos , Camundongos , Fosforilação , RNA Longo não Codificante/genética , Transdução de Sinais/fisiologia , Estômago/patologia , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia
6.
Cell Physiol Biochem ; 49(1): 306-321, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30138931

RESUMO

BACKGROUND/AIMS: To identify new treatment strategies for gastric cancer and to elucidate the mechanism underlying its pathophysiology, we transfected sh-MARCH8 into the human gastric cancer cell lines MKN-45 and AGS to investigate the roles of MARCH8 in gastric cancer. METHODS: We used genetic engineering to construct the sh-MARCH8 interference plasmid and transfected it into gastric cancer cells. Colony formation assays and cell viability measurements were performed to detect the viability and proliferation of cancer cells. Wound healing assays were performed to estimate the migration and proliferation rates of the cells. Cell invasion assays were used to estimate the invasive abilities of the cells. Cell apoptosis analysis was performed by using flowing cytometry. Western blot analysis was performed to estimate the expression levels of proteins. Statistical analysis was performed using the SPSS 18.0 software. Student's t-test was used to determine the significance of all pairwise comparisons of interest. RESULTS: We observed that the transfection of sh-MARCH8 inhibited the survival and proliferation of MKN-45 and AGS cells. The migration and invasion of the MKN-45 and AGS cells were significantly decreased, and apoptosis was induced in comparison with the control cells. These results were further confirmed by data showing that sh-MARCH8 increased the BAX/BCL2 ratio in MKN-45 and AGS cells. We also observed that sh-MARCH8 inactivated the PI3K and ß-catenin stat3 signaling pathways by changing protein expression levels or the phosphorylation of related proteins. CONCLUSION: These data suggested that sh-March8 reduced viability and induced apoptosis of the MKN-45 and AGS cells through the PI3K and ß-catenin stat3 signaling pathways. Taken together, our data revealed that transfection of sh-MARCH8 into the MKN-45 and AGS gastric cancer cell lines inhibited their growth, and this approach may be useful as a novel strategy for gastric cancer therapy.


Assuntos
Fosfatidilinositol 3-Quinases/metabolismo , RNA Interferente Pequeno/metabolismo , Neoplasias Gástricas/patologia , Ubiquitina-Proteína Ligases/metabolismo , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Sobrevivência Celular , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Interferência de RNA , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/mortalidade , Taxa de Sobrevida , Ubiquitina-Proteína Ligases/antagonistas & inibidores , Ubiquitina-Proteína Ligases/genética , Proteína X Associada a bcl-2/metabolismo , beta Catenina/metabolismo
7.
Cell Physiol Biochem ; 44(6): 2158-2173, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29241186

RESUMO

BACKGROUND/AIMS: MicroRNA-21 is an oncogenic miR (oncomiR) frequently elevated in gastric cancer (GC). Overexpression of miR-21 decreases the sensitivity of GC cells to 5-fluorouridine (5-Fu) and trastuzumab, a humanized monoclonal antibody targeting human epidermal growth factor receptor 2 (HER2). Receptor-mediated endocytosis plays a crucial role in the delivery of biotherapeutics including anti-miRNA oligonucleotides (AMOs). This study is a continuation of earlier findings involving poly(ε-caprolactone) (PCL)-poly (ethylene glycol) (PEG) nanoparticles (PEG-PCL NPs), which were coated with trastuzumab to target GC with HER2 receptor over-expression using anti-miRNA-21 (AMO-21) and 5-Fu. METHODS: HER-PEG-PCL NPs were prepared by one-step carbodiimide coupling using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDAc) and Sulfo-NHS in aqueous phase. Covalent coupling of amino groups at the surface of PEG-PCL with the carboxyl groups of trastuzumab was analyzed by X-ray photoelectron spectroscopy (XPS). AMO-21/5-Fu NPs were formulated by a double-emulsion solvent evaporation technique. The cell line specificity, cellular uptake and AMO-21 delivery were investigated through the rhodamine-B-labeled 6-carboxyfluorescein (FAM)-AMO-21-PEG-PCL NPs coated with or without the antibody in both Her2-positive (NUGC4) and negative GC cells (SGC7901) visualized by fluorescence microscopy. The cytotoxicity of the HER-PEG-PCL NPs encapsulating AMO-21 was evaluated by MTT and apoptosis. Real-time reverse-transcription polymerase chain reaction (RT-PCR) was used to examine miR-21 and phosphatase and tensin homolog (PTEN) and Sprouty2 expression in GC cell lines. The antitumor effects of AMO-21/5-Fu NPs were compared with other groups in xenograft gastric cancer mice. RESULTS: The antibody conjugates significantly enhanced the cellular uptake of NPs. The AMO-21/5-Fu NPs effectively suppressed the target miRNA expression in GC cells, which further up-regulated PTEN and Sprouty2. As a result, the sensitivity of HER2-expressing gastric cancer to trastuzumab and 5-Fu were enhanced both in vitro and in vivo. The approach enhanced the targeting by trastuzumab as well as antibody-dependent cellular cytotoxicity (ADCC) of immune effector cells Conclusions: Taken together, the results provide insight into the biological and clinical potential of targeted AMO-21 and 5-Fu co-delivery using modified trastuzumab for GC treatment.


Assuntos
Antagomirs/genética , Antagomirs/uso terapêutico , Antineoplásicos/uso terapêutico , MicroRNAs/genética , Neoplasias Gástricas/terapia , Trastuzumab/uso terapêutico , Uridina/análogos & derivados , Animais , Antagomirs/administração & dosagem , Antineoplásicos/administração & dosagem , Linhagem Celular Tumoral , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Nanopartículas/química , Poliésteres/química , Receptor ErbB-2/análise , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Trastuzumab/administração & dosagem , Uridina/administração & dosagem , Uridina/uso terapêutico
8.
Oncotarget ; 8(40): 67189-67202, 2017 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-28978026

RESUMO

MiR-21 is an oncogenic miR frequently elevated in gastric cancer. Overexpression of miR-21 decreases the sensitivity of gastric cancer cells to trastuzumab, which is a humanized monoclonal antibody targeting human epidermal growth factor receptor 2. However, optimization of miRNA or its anti-miRNA oligonucleotides (AMOs) for delivery is a challenge. Receptor-mediated endocytosis plays a crucial role in the delivery of biotherapeutics including AMOs. This study is a continuation of our earlier findings involving poly(ε-caprolactone) (PCL)-poly (ethylene glycol) (PEG) nanoparticles (PEG-PCL NPs), which were coated with trastuzumab to target gastric cancer cells with HER2 receptor over-expression using anti-miRNA-21 antisense oligonucleotides (AMO-21). The antibody conjugates (HER-PEG-PCL NPs) act against target cells via antibody-dependent mechanisms and also based on encapsutalated AMO-21. X-ray photoelectron spectroscopy validated the presence of trastuzumab on NP surface. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) revealed a stable antibody expression. The cell line specificity, cellular uptake, AMO-21 delivery, and cytotoxicity of the HER-PEG-PCL NPs were investigated. We found that the antibody conjugates significantly enhanced the cellular uptake of NPs. The HER-PEG-PCL NPs effectively suppressed the target miRNA expression in gastric cancer cells, which further up-regulated phosphatase and tensin homolog (PTEN). As a result, the sensitivity of HER2-expressing gastric cancer cells to trastuzumab was enhanced. The approach enhances the targeting by trastuzumab as well as antibody-dependent cellular cytotoxicity of immune effector cells. The antitumor effects of AMO-21-HER-PEG-PCL NPs were compared with trastuzumab in xenograft gastric cancer mice. The results provide insight into the biological and clinical potential of targeted AMO-21 delivery using modified trastuzumab for gastric cancer treatment.

9.
Oncotarget ; 8(70): 114495-114505, 2017 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-29383097

RESUMO

Hypermethylation of the transcription factor AP-2 epsilon (TFAP2E) gene affects 5-fluorouridine (5-FU) resistance in gastric cancer (GC) patients. The epigenetic inhibitor 5-Aza-2'-deoxycytidine (DAC), which reverses DNA methylation by targeting DNA methyltransferases (DNMTs), has potential to sensitize GC to 5-FU. Nevertheless, DNA demethylation only DAC transiently occurs since DAC is unstable in aqueous solutions, which limits its potential. Here we developed intelligent nanoparticles (NPs) comprising gelatinase with polyethylene glycol (PEG) and poly-ε-caprolactone) (PCL) to specifically deliver DAC (DAC-TNPs) to tumors. DAC-carrying PEG-PCL NPs (DAC-NPs) lacking gelatinase features served as controls. 72 hours after administration of DAC-TNPs or DAC-NPs, 5-FU was sequentially applied to GC cells and human GC xenografts in nude mice. Both in vitro and in vivo evaluations demonstrated that the combination treatment of DAC-TNPs and 5-FU greatly improved tumor suppression in GC cells and mouse xenograft models with hypermethylation TFAP2E (MKN45 cells). We thus propose that the sequential administration of DAC-TNPs and 5-FU could be significant in the development of novel targeted therapies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...