Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(10)2023 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-37430853

RESUMO

Wearable surface electromyography (sEMG) signal-acquisition devices have considerable potential for medical applications. Signals obtained from sEMG armbands can be used to identify a person's intentions using machine learning. However, the performance and recognition capabilities of commercially available sEMG armbands are generally limited. This paper presents the design of a wireless high-performance sEMG armband (hereinafter referred to as the α Armband), which has 16 channels and a 16-bit analog-to-digital converter and can reach 2000 samples per second per channel (adjustable) with a bandwidth of 0.1-20 kHz (adjustable). The α Armband can configure parameters and interact with sEMG data through low-power Bluetooth. We collected sEMG data from the forearms of 30 subjects using the α Armband and extracted three different image samples from the time-frequency domain for training and testing convolutional neural networks. The average recognition accuracy for 10 hand gestures was as high as 98.6%, indicating that the α Armband is highly practical and robust, with excellent development potential.


Assuntos
Antebraço , Gestos , Humanos , Eletromiografia , Intenção , Aprendizado de Máquina
2.
Sensors (Basel) ; 23(6)2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36992010

RESUMO

The inspection of railway fasteners to assess their clamping force can be used to evaluate the looseness of the fasteners and improve railway safety. Although there are various methods for inspecting railway fasteners, there is still a need for non-contact, fast inspection without installing additional devices on fasteners. In this study, a system that uses digital fringe projection technology to measure the 3D topography of the fastener was developed. This system inspects the looseness through a series of algorithms, including point cloud denoising, coarse registration based on fast point feature histograms (FPFH) features, fine registration based on the iterative closest point (ICP) algorithm, specific region selection, kernel density estimation, and ridge regression. Unlike the previous inspection technology, which can only measure the geometric parameters of fasteners to characterize the tightness, this system can directly estimate the tightening torque and the bolt clamping force. Experiments on WJ-8 fasteners showed a root mean square error of 9.272 N·m and 1.94 kN for the tightening torque and clamping force, demonstrating that the system is sufficiently precise to replace manual measurement and can substantially improve inspection efficiency while evaluating railway fastener looseness.

3.
Front Chem ; 10: 1019822, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36238103

RESUMO

The process method of a Si3N4 ceramic sealed cavity is realized by vacuum brazing and chemical reaction at 1,100°C and 0.5 MPa pressure. Through the combination of Si3N4 ceramic polishing and thinning, inductively coupled plasma etching, and high-temperature metal filler (Ti-Zr-Cu-Ni) brazing process, a vacuum-sealed cavity suitable for high-temperature environments was prepared. The cross section of the bonding interface was characterized by scanning electron microscope (SEM) and energy dispersive spectrometer (EDS), which indicated that the two Si3N4 ceramic were well bonded, the cavity structure remained intact, and the bonding interface strength exceeded 5.13 MPa. Furthermore, it retained its strong bonding strength after in high-temperature environments of 1,000, 1,050, and 1,100°C for 1 h. This indicates that a brazed vacuum-sealed cavity can be used in high-temperature environments. Through the proposed method, pressure sensor that can withstand high temperatures can be developed.

4.
Nanomaterials (Basel) ; 12(17)2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-36079935

RESUMO

As the key component of aero-engines and industrial gas turbines, a bearing's working temperature at high speed is close to 300 ℃. The measurement of an engine bearing's temperature is of great significance to ensure flight safety. In this study, we present a wireless LC conformal temperature sensor for bearing temperatures, which integrates silver on the bearing surface in situ through a screen-printing process. This process makes Ag film (9912-K FL) firmly adhere to the bearing surface and realizes wireless measurements for bearing temperatures in situ. A high-temperature holding experiment of the prepared sensor was conducted, and the results showed that the sensor can work stably for 10 h at 300 ℃. We tested the designed wireless LC conformal temperature sensor at 20−270 ℃. The results showed that the proposed temperature sensor attained as good accuracy and stability in the temperature range 20−270 ℃. The sensitivity of the temperature measurements was 20.81 KHz/℃ when the bearing rotateds, the maximum repeatability was 0.039%, the maximum uncertainty was 0.081%, and the relative error was stable within 0.08%.

5.
Front Chem ; 10: 1001531, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36110136

RESUMO

Electrochromic devices (ECDs) that display multicolor patterns have gradually attracted widespread attention. Considering the complexity in the integration of various electrochromic materials and multi-electrode configurations, the design of multicolor patterned ECDs based on simple approaches is still a big challenge. Herein, it is demonstrated vivid ECDs with broadened color hues via introducing carbon dots (CDs) into the ion electrolyte layer. Benefiting from the synergistic effect of electrodes and electrolytes, the resultant ECDs presented a rich color change. Significantly, the fabricated ECDs can still maintain a stable and reversible color change even in high temperature environments where operating temperatures are constantly changing from RT to 70°C. These findings represent a novel strategy for fabricating multicolor electrochromic displays and are expected to advance the development of intelligent and portable electronics.

6.
Rev Sci Instrum ; 92(11): 113703, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34852566

RESUMO

The quality of polarization images is easy to be affected by the noise in the image acquired by a polarization camera. Consequently, a de-noising method optimized with a Pulse Coupled Neural Network (PCNN) for polarization images is proposed for a Field-Programmable Gate Array (FPGA)-based polarization camera in this paper, in which the polarization image de-noising is implemented using an adaptive PCNN improved by Gray Wolf Optimization (GWO) and Bi-Dimensional Empirical Mode Decomposition (BEMD). Unlike other artificial neural networks, PCNN does not need to be trained, but the parameters of PCNN such as the exponential decay time constant, the synaptic junction strength factor, and the inherent voltage constant play a critical influence on its de-noising performance. GWO is able to start optimization by generating a set of random solutions as the first population and saves the optimized solutions of PCNN. In addition, BEMD can decompose a complicated image into different Bi-Dimensional Intrinsic Mode Functions with local stabilized characteristics according to the input source image, and the decomposition result is able to lower the complexity of heavy noise image analysis. Moreover, the circuit in the polarization camera is accomplished by FPGA so as to obtain the polarization image with higher quality synchronously. These two schemes are combined to attenuate different types of noises and improve the quality of the polarization image significantly. Compared with the state-of-the-art image de-noising algorithms, the noise in the polarization image is suppressed effectively by the proposed optimized image de-noising method according to the indices of peak signal-to-noise ratio, standard deviation, mutual information, structural similarity, and root mean square error.


Assuntos
Redes Neurais de Computação , Processamento de Sinais Assistido por Computador , Algoritmos , Processamento de Imagem Assistida por Computador , Razão Sinal-Ruído
7.
Appl Opt ; 59(5): 1301-1306, 2020 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-32225381

RESUMO

A novel Fabry-Perot (F-P) demodulation technique based on least square fitting for arbitrary reflectivity F-P sensors is proposed. The demodulation method was simulated and analyzed to verify feasibility of the algorithm. Two different finesse F-P interferometers constructed with a reflector bracket were used to make the stability experiments and the stepping experiments. The results show that the demodulation technique can interrogate the cavity length of F-P interferometers with different fineness in a wide range, and the demodulation error is less than 12 nm.

8.
Micromachines (Basel) ; 11(3)2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-32121039

RESUMO

An in-line fiber optic Fabry-Perot (FP) sensor for high-temperature vibration measurement is proposed and experimentally demonstrated in this paper. We constructed an FP cavity and a mass on single-mode fibers (SMFs) by fusion, and together they were inserted into a hollow silica glass tube (HST) to form a vibration sensor. The radial dimension of the sensor was less than 500 µm. With its all-silica structure, the sensor has the prospect of measuring vibration in high-temperature environments. In our test, the sensor had a resonance frequency of 165 Hz. The voltage sensitivity of the sensor system was about 11.57 mV/g and the nonlinearity was about 2.06%. The sensor could work normally when the temperature was below 500 °C, and the drift of the phase offset point with temperature was 0.84 pm/°C.

9.
Micromachines (Basel) ; 10(10)2019 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-31547087

RESUMO

In this work, the piezoresistive properties of heavily doped p-type 4H-SiC at room temperature were investigated innovatively. It was verified by a field emission scanning electron microscope (FESEM), X-ray diffraction (XRD), and laser Raman spectroscopy (LRS) that the crystal quality of the epitaxial layer was good. The doping concentration and thickness of the epitaxial layer were measured by secondary ion mass spectrometry (SIMS) to be ~1.12 × 1019 cm-3 and ~1.1 µm, respectively. The 4H-SiC cantilever beam along [ 1 1 - 00 ] crystal orientation was fabricated, and the fixed end of the cantilever beam was integrated with longitudinal and transverse p-type 4H-SiC piezoresistors. A good ohmic contact was formed between Ni/Ti/Al/Au and a p-type 4H-SiC piezoresistor under nitrogen environment annealing at 1050 °C for 5 min. The free end of the cantilever beam was forced to cause strain on the p-type 4H-SiC piezoresistor, and then the resistances were measured by a high precision multimeter. The experimental results illustrated that longitudinal and transverse gauge factors (GFs) of the p-type 4H-SiC piezoresistors were 26.7 and -21.5, respectively, within the strain range of 0-336µÎµ. In order to further verify the electro-mechanical coupling effect of p-type 4H-SiC, the piezoresistors on the beam were connected to the Wheatstone full-bridge circuit and the output changes were observed under cyclic loading of 0-0.5 N. The measuring results revealed that the transducer based on the 4H-SiC piezoresistive effect exhibited good linearity and hysteresis, which confirmed that p-type 4H-SiC has the potential for pressure or acceleration sensing applications.

10.
Appl Opt ; 58(7): 1662-1666, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30874197

RESUMO

In this study, a fiber-optic Fabry-Perot (FP) high-temperature pressure sensor based on sapphire direct bonding is proposed and experimentally demonstrated. The sensor is fabricated by direct bonding of two-layer sapphire wafers, including a pressure diaphragm wafer and a cavity-etched wafer. The sensor is composed of a sensor head that contains a vacuum-sealed cavity arranged as an FP cavity and a multimode optical fiber. The external pressure can be measured by detecting the change in FP cavity length in the sensor. Experimental results demonstrate the sensing capabilities for pressures from 20 kPa to 700 kPa up to 800°C.

11.
Appl Opt ; 57(15): 4211-4215, 2018 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-29791395

RESUMO

In this study, a novel batch-producible fiber-optic Fabry-Perot (FP) pressure sensor based on a low-temperature co-fired ceramic technology is proposed and experimentally demonstrated for high-temperature applications. The sensor is fabricated by inserting a well-cut single-mode fiber (SMF) into a zirconia fiber ferrule, followed by insertion of the overall structure into an alumina sensor head. The FP cavity in the sensor is formed by placing the end face of the SMF in parallel to the diaphragm. The external pressure can be detected by demodulating the FP cavity length of the sensor. A theoretical analysis indicates that the pressure sensitivity can be designed flexibly by adjusting the parameters of the ceramic diaphragm, radius, and thickness. Experimental results demonstrate that the pressure sensor exhibits a high linear sensitivity of approximately 0.1 µm/kPa at room temperature in the pressure range up to 160 kPa. The repeatability error and nonlinear error of three repeatable experiments are approximately 2.60% and smaller than 0.101%, respectively. The temperature coefficient and coefficient of the pressure-sensitivity changes with temperature are 0.023 µm/°C and 0.205 nm/(kPa°C) in the temperature range of 20°C-300°C.

12.
Sensors (Basel) ; 18(4)2018 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-29597325

RESUMO

A diaphragm-free fiber-optic Fabry-Perot (FP) interferometric gas pressure sensor is designed and experimentally verified in this paper. The FP cavity was fabricated by inserting a well-cut fiber Bragg grating (FBG) and hollow silica tube (HST) from both sides into a silica casing. The FP cavity length between the ends of the SMF and HST changes with the gas density. Using temperature decoupling method to improve the accuracy of the pressure sensor in high temperature environments. An experimental system for measuring the pressure under different temperatures was established to verify the performance of the sensor. The pressure sensitivity of the FP gas pressure sensor is 4.28 nm/MPa with a high linear pressure response over the range of 0.1-0.7 MPa, and the temperature sensitivity is 14.8 pm/°C under the range of 20-800 °C. The sensor has less than 1.5% non-linearity at different temperatures by using temperature decoupling method. The simple fabrication and low-cost will help sensor to maintain the excellent features required by pressure measurement in high temperature applications.

13.
Sensors (Basel) ; 18(2)2018 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-29439393

RESUMO

Low-cost wireless temperature measurement has significant value in the food industry, logistics, agriculture, portable medical equipment, intelligent wireless health monitoring, and many areas in everyday life. A wireless passive temperature sensor based on PCB (Printed Circuit Board) materials is reported in this paper. The advantages of the sensor include simple mechanical structure, convenient processing, low-cost, and easiness in integration. The temperature-sensitive structure of the sensor is a dielectric-loaded resonant cavity, consisting of the PCB substrate. The sensitive structure also integrates a patch antenna for the transmission of temperature signals. The temperature sensing mechanism of the sensor is the dielectric constant of the PCB substrate changes with temperature, which causes the resonant frequency variation of the resonator. Then the temperature can be measured by detecting the changes in the sensor's working frequency. The PCB-based wireless passive temperature sensor prototype is prepared through theoretical design, parameter analysis, software simulation, and experimental testing. The high- and low-temperature sensing performance of the sensor is tested, respectively. The resonant frequency decreases from 2.434 GHz to 2.379 GHz as the temperature increases from -40 °C to 125 °C. The fitting curve proves that the experimental data have good linearity. Three repetitive tests proved that the sensor possess well repeatability. The average sensitivity is 347.45 KHz / ℃ from repetitive measurements conducted three times. This study demonstrates the feasibility of the PCB-based wireless passive sensor, which provides a low-cost temperature sensing solution for everyday life, modern agriculture, thriving intelligent health devices, and so on, and also enriches PCB product lines and applications.


Assuntos
Tecnologia sem Fio , Sistemas Microeletromecânicos , Temperatura
14.
Sensors (Basel) ; 17(9)2017 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-28892010

RESUMO

In this letter, we present a sapphire direct bonding method using plasma surface activation, hydrophilic pre-bonding, and high temperature annealing. Through the combination of sapphire inductively coupled plasma etching and the direct bonding process, a vacuum-sealed cavity employable for high temperature applications is achieved. Cross-sectional scanning electron microscopy (SEM) research of the bonding interface indicates that the two sapphire pieces are well bonded and the cavity structure stays intact. Moreover, the tensile testing shows that the bonding strength of the bonding interface is in excess of 7.2 MPa. The advantage of sapphire direct bonding is that it is free from the various problems caused by the mismatch in the coefficients of thermal expansion between different materials. Therefore, the bonded vacuum-sealed cavity can be potentially further developed into an all-sapphire pressure sensor for high temperature applications.

15.
Waste Manag ; 66: 88-96, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28456456

RESUMO

Landfill leachate contains high concentrations of organic compounds and ammonium, and the presence of heavy metal ions, which normally requires expensive and complex treatment processes. In this study, full-scale experiments were implemented to evaluate the feasibility of mechanical vapor recompression (MVR) treating leachate. Results revealed that despite the drastic changes of influent pollutant concentrations, MVR system possessed the ability to reduce most of the pollutants and guarantee the effluent in compliance with the discharge limits of Chinese Standard. Fouling analyses revealed that the main components in the fouling were crystalline (Mg0.06Ca0.94)(CO3), combining with humus and silicon compounds. A fouling cleaning method was developed with the adding sequence of first sulphamic acid and then NaOH, which could remove 88.62% fouling. Although fouling was inevitable for MVR treating leachate, coagulation pretreatment removed large amounts of COD, BOD5, total nitrogen, ammonium and total phosphorus, with the respective means of 68.4%, 69.4%, 81.0%, 84.1% and 81.4%, and thereafter reduced the treatment cost 27.4% from 47.06 RMB (6.92 US dollars)/m3 to 34.15 RMB (5.02 US dollars)/m3. These outcomes provided that in addition to the combination method of biological removal process with membrane technology, MVR process was another feasible solution for leachate treatment.


Assuntos
Instalações de Eliminação de Resíduos , Poluentes Químicos da Água , Compostos de Amônio , Metais Pesados , Nitrogênio , Fósforo
16.
Micromachines (Basel) ; 9(1)2017 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-30393288

RESUMO

It is widely accepted that wireless reading for in-situ mapping of pressure under high-temperature environments is the most feasible method, because it is not subject to frequent heterogeneous jointing failures and electrical conduction deteriorating, or even disappearing, under heat load. However, in this article, we successfully demonstrate an in-situ pressure sensor with wire interrogation for high-temperature applications. In this proof-of-concept study of the pressure sensor, we used a microwave resonator as a pressure-sensing component and a microwave transmission line as a pressure characteristic interrogation tunnel. In the sensor, the line and resonator are processed into a monolith, avoiding a heterogeneous jointing failure; further, microwave signal transmission does not depend on electrical conduction, and consequently, the sensor does not suffer from the heat load. We achieve pressure monitoring under 400 °C when employing the sensor simultaneously. Our sensor avoids restrictions that exist in wireless pressure interrogations, such as environmental noise and interference, signal leakage and security, low transfer efficiency, and so on.

17.
Micromachines (Basel) ; 8(10)2017 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-30400491

RESUMO

An aluminum nitride (AlN) based patch antenna-type high-temperature wireless passive sensor is reported to operate as both a sensor and an antenna, which integrates in situ measurement/sensing with remote wireless communication at the same time. The sensor is small, easy to manufacture, highly sensitive and has a high operating temperature; it can be used in high-temperature, chemically corrosive and other harsh environments. The sensing mechanism of the sensor, the dielectric constant of the AlN ceramic substrate, increases with rising temperature, which reduces the resonant frequency of the sensor. Thus, the temperature can be measured by detecting changes in the sensor's resonant frequency. High-Frequency Simulation Structure (HFSS) software is used to determine the structure and size of the sensor, which is then fabricated using thick-film technology. The substrate of the sensor is AlN ceramic due to its outstanding thermal resistance at high temperature; and its conductors (the radiation patch and the ground under the substrate) are silver-palladium alloy sintered form silver⁻palladium paste. A vector network analyzer reveals that the sensor's operating range extends to 700 °C. Furthermore, its resonant frequency decreases from 2.20 GHz to 2.13 GHz with increasing temperature from room temperature (25 °C) to 700 °C, with an absolute sensitivity of 104.77 KHz/°C. Our work verifies the feasibility of measuring high temperatures using AlN-based patch antenna wireless passive temperature sensors, and provides a new material and temperature sensitive structure for high-temperature measurement in harsh environments.

18.
Sensors (Basel) ; 16(7)2016 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-27455271

RESUMO

The main limitation of high-temperature piezoresistive pressure sensors is the variation of output voltage with operating temperature, which seriously reduces their measurement accuracy. This paper presents a passive resistor temperature compensation technique whose parameters are calculated using differential equations. Unlike traditional experiential arithmetic, the differential equations are independent of the parameter deviation among the piezoresistors of the microelectromechanical pressure sensor and the residual stress caused by the fabrication process or a mismatch in the thermal expansion coefficients. The differential equations are solved using calibration data from uncompensated high-temperature piezoresistive pressure sensors. Tests conducted on the calibrated equipment at various temperatures and pressures show that the passive resistor temperature compensation produces a remarkable effect. Additionally, a high-temperature signal-conditioning circuit is used to improve the output sensitivity of the sensor, which can be reduced by the temperature compensation. Compared to traditional experiential arithmetic, the proposed passive resistor temperature compensation technique exhibits less temperature drift and is expected to be highly applicable for pressure measurements in harsh environments with large temperature variations.

19.
Sensors (Basel) ; 16(6)2016 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-27322288

RESUMO

This paper focuses on the design and fabrication of a high-temperature piezoresistive pressure sensor with an integrated signal-conditioning circuit, which consists of an encapsulated pressure-sensitive chip, a temperature compensation circuit and a signal-conditioning circuit. A silicon on insulation (SOI) material and a standard MEMS process are used in the pressure-sensitive chip fabrication, and high-temperature electronic components are adopted in the temperature-compensation and signal-conditioning circuits. The entire pressure sensor achieves a hermetic seal and can be operated long-term in the range of -50 °C to 220 °C. Unlike traditional pressure sensor output voltage ranges (in the dozens to hundreds of millivolts), the output voltage of this sensor is from 0 V to 5 V, which can significantly improve the signal-to-noise ratio and measurement accuracy in practical applications of long-term transmission based on experimental verification. Furthermore, because this flexible sensor's output voltage is adjustable, general follow-up pressure transmitter devices for voltage converters need not be used, which greatly reduces the cost of the test system. Thus, the proposed high-temperature piezoresistive pressure sensor with an integrated signal-conditioning circuit is expected to be highly applicable to pressure measurements in harsh environments.

20.
Sensors (Basel) ; 15(2): 2548-64, 2015 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-25690546

RESUMO

A wireless passive pressure measurement system for an 800 °C high-temperature environment is proposed and the impedance variation caused by the mutual coupling between a read antenna and a LC resonant sensor is analyzed. The system consists of a ceramic-based LC resonant sensor, a readout device for impedance phase interrogation, heat insulating material, and a composite temperature-pressure test platform. Performances of the pressure sensor are measured by the measurement system sufficiently, including pressure sensitivity at room temperature, zero drift from room temperature to 800 °C, and the pressure sensitivity under the 800 °C high temperature environment. The results show that the linearity of sensor is 0.93%, the repeatability is 6.6%, the hysteretic error is 1.67%, and the sensor sensitivity is 374 KHz/bar. The proposed measurement system, with high engineering value, demonstrates good pressure sensing performance in a high temperature environment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...