Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 9(13): 15493-15501, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38585131

RESUMO

Glucose oxidase (GOx) activity assays are vital for various applications, including glucose metabolism estimation and fungal testing. However, conventional methods involve time-consuming and complex procedures. In this study, we present a colorimetric platform for in situ GOx activity measurement utilizing redox-sensitive electrochromic nanoparticles based on polyaniline (PAni). The glucose-adsorbed colorimetric paper sensor, herein termed Glu@CPS, is created by immobilizing ferrocene and glucose onto paper substrates that have been functionalized with PAni nanoparticles. Glu@CPS not only demonstrated rapid detection (within 5 min) but also exhibited remarkable selectivity for GOx and a limit of detection as low as 1.25 µM. Moreover, Glu@CPS demonstrated consistent accuracy in the measurement of GOx activity, exhibiting no deviations even after being stored at ambient temperature for a duration of one month. To further corroborate the effectiveness of this method, we applied Glu@CPS in the detection of GOx activity in a moldy red wine. The results highlight the promising potential of Glu@CPS as a convenient and precise platform for GOx activity measurement in diverse applications including food quality control, environmental monitoring, and early detection of fungal contamination.

2.
Biosens Bioelectron ; 228: 115202, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36940632

RESUMO

COVID-19, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has caused an ongoing global pandemic with economic and social disruption. Moreover, the virus has persistently and rapidly evolved into novel lineages with mutations. The most effective strategy to control the pandemic is suppressing virus spread through early detection of infections. Therefore, developing a rapid, accurate, easy-to-use diagnostic platform against SARS-CoV-2 variants of concern remains necessary. Here, we developed an ultra-sensitive label-free surface-enhanced Raman scattering-based aptasensor as a countermeasure for the universal detection of SARS-CoV-2 variants of concern. In this aptasensor platform, we discovered two DNA aptamers that enable binding to SARS-CoV-2 spike protein via the Particle Display, a high-throughput screening approach. These showed high affinity that exhibited dissociation constants of 1.47 ± 0.30 nM and 1.81 ± 0.39 nM. We designed a combination with the aptamers and silver nanoforest for developing an ultra-sensitive SERS platform and achieved an attomolar (10-18 M) level detection limit with a recombinant trimeric spike protein. Furthermore, using the intrinsic properties of the aptamer signal, we demonstrated a label-free aptasensor approach, enabling use without the Raman tag. Finally, our label-free SERS-combined aptasensor succeeded in detecting SARS-CoV-2 with excellent accuracy, even in clinical samples with variants of concern, including the wild-type, delta, and omicron variants.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , COVID-19 , Humanos , SARS-CoV-2/genética , COVID-19/diagnóstico
3.
Int J Biol Macromol ; 227: 601-607, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36543295

RESUMO

Proteolysis of amyloids is related to prevention and treatment of amyloidosis. What if the conditions for proteolysis were the same to those for amyloid formation? For example, pepsin, a gastric protease is activated in an acidic environment, which, interestingly, is also a condition that induces the amyloid formation. Here, we investigate the competition reactions between proteolysis and synthesis of amyloid under pepsin-activated conditions. The changes in the quantities and nanomechanical properties of amyloids after pepsin treatment were examined by fluorescence assay, circular dichroism and atomic force microscopy. We found that, in the case of pepsin-resistant amyloid, a secondary reaction can be accelerated, thereby proliferating amyloids. Moreover, after this reaction, the amyloid became 32.4 % thicker and 24.2 % stiffer than the original one. Our results suggest a new insight into the proteolysis-driven proliferation and rigidification of pepsin-resistant amyloids.


Assuntos
Amiloide , Pepsina A , Proteólise , Pepsina A/metabolismo , Amiloide/metabolismo , Peptídeo Hidrolases/metabolismo , Dicroísmo Circular , Proteínas Amiloidogênicas , Proliferação de Células , Microscopia de Força Atômica
4.
Anal Methods ; 14(46): 4749-4755, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36373210

RESUMO

Colorimetric paper sensors are used in various fields due to their convenience and intuitive manner. However, these sensors present low accuracy in practical use because it is difficult to distinguish color changes for a minute amount of analyte with the naked eye. Herein, we demonstrate that a machine learning (ML)-based paper sensor platform accurately determines the color changes. We fabricated a colorimetric paper sensor by adsorbing polyaniline nanoparticles (PAni-NPs), whose color changes from blue to green when the ambient pH decreases. Adding glucose oxidase (GOx) to the paper sensor enables colorimetric glucose detection. Target analytes (10 µL) were aliquoted onto the paper sensors, and their images were taken with a smartphone under the same conditions in a darkroom. The red-green-blue (RGB) data from the images were extracted and used to train and test three regression models: support vector regression (SVR), decision tree regression (DTR), and random forest regression (RFR). Of the three regression models, RFR performed the best at estimating pH levels (R2 = 0.957) ranging from pH 2 to 10 and glucose concentrations (R2 = 0.922) ranging from 0 to 10 mg mL-1.


Assuntos
Colorimetria , Aprendizado de Máquina , Colorimetria/métodos , Oxirredução , Glucose , Concentração de Íons de Hidrogênio
5.
Nanomaterials (Basel) ; 12(22)2022 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-36432366

RESUMO

Hydrogels containing redox-sensitive colorimetric nanoparticles (NPs) have been used to sense ambient pH in many fields owing to their simple and fast visualization capabilities. However, real-time pH monitoring still has limitations due to its poor response rate and irreversibility. Herein, we developed a fast responsive colorimetric hydrogel called ferrocene adsorption colorimetric hydrogel (FACH). Ferrocene, an organometallic compound, plays a vital role as an electron transfer mediator (i.e., redox catalyst) within the hydrogel network. FACH shows fast color change performance with high reactivity and penetrability to ambient pH changes. In detail, FACH shows distinct color change within 2 min under various pH conditions from four to eight, with good reliability. The speed for color change of FACH is approximately six times faster than that of previously developed colorimetric hydrogels, suggesting the fastest hydrogel-based colorimetric pH sensor. Furthermore, FACH shows reversibility and repeatability of the redox process, indicating scalable utility as a sustainable pH monitoring platform.

6.
Nanoscale Horiz ; 7(12): 1488-1500, 2022 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-36111604

RESUMO

Cells secrete extracellular vesicles (EVs) carrying cell-of-origin markers to communicate with surrounding cells. EVs regulate physiological processes ranging from intercellular signaling to waste management. However, when senescent cells (SnCs) secrete EVs, the EVs, which are newly regarded as senescence-associated secretory phenotype (SASP) factors, can evoke inflammation, senescence induction, and metabolic disorders in neighboring cells. Unlike other soluble SASP factors, the biophysical properties of EVs, including small EVs (sEVs), derived from SnCs have not yet been investigated. In this study, sEVs were extracted from a human IMR90 lung fibroblast in vitro senescence model. Their biomechanical properties were mapped using atomic force microscopy-based quantitative nanomechanical techniques, surface potential microscopy, and Raman spectroscopy. The surfaces of sEVs derived from SnCs are slightly stiffer but their cores are softer than those of sEVs secreted from non-senescent cells (non-SnCs). This inversely proportional relationship between deformation and stiffness, attributed to a decrease in the concentration of genetic and protein materials inside the vesicles and the adsorption of positively charged SASP factors onto the vesicle surfaces, respectively, was found to be a peculiar characteristic of SnC-derived sEVs. Our results demonstrate that the biomechanical properties of SnC-derived sEVs differ from those of non-SnC-derived sEVs and provide insight into the mechanisms underlying their formation and composition.


Assuntos
Vesículas Extracelulares , Análise Espectral Raman , Humanos , Microscopia de Força Atômica , Fibroblastos/metabolismo , Biofísica
7.
Biosensors (Basel) ; 12(4)2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35448308

RESUMO

In emergency medicine, the lactate level is commonly used as an indicator of the severity and response to the treatment of hypoperfusion-related diseases. Clinical lactate measurements generally require 3 h for clinical determination. To improve the current gold standard methods, the development of sensor devices that can reduce detection time while maintaining sensitivity and providing portability is gaining great attention. This study aimed to develop a polyaniline (PAni)-based single-sensor platform for sensing lactate in human sweat using a CIELAB color system-based colorimetric device. To establish a lactate sensing platform, PAni nanoparticles were synthesized and adsorbed on the filter paper surface using solvent shift and dip-coating methods, respectively. PAni is characterized by a chemical change accompanied by a color change according to the surrounding environment. To quantify the color change of PAni, a CIELAB color system-based colorimetric device was fabricated. The color change of PAni was measured according to the chemical state using a combination of a PAni-based filter paper sensor platform and a colorimetric device, based on the lactate concentration in deionized water. Finally, human sweat was spiked with lactate to measure the color change of the PAni-based filter paper sensor platform. Under these conditions, the combination of polyaniline-based sensor platforms and colorimetric systems has a limit of detection (LOD) and limit of quantitation (LOQ) of 1 mM, linearity of 0.9684, and stability of 14%. Tbe confirmed that the color of the substrate changes after about 30 s, and through this, the physical fatigue of the individual can be determined. In conclusion, it was confirmed through this study that a combination of the PAni paper sensor platform and colorimeter can detect clinically meaningful lactate concentration.


Assuntos
Nanopartículas , Suor , Compostos de Anilina , Colorimetria/métodos , Humanos , Ácido Láctico/análise , Suor/química
8.
Nanomaterials (Basel) ; 12(7)2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-35407268

RESUMO

Hydrogels containing colorimetric nanoparticles have been used for ion sensing, glucose detection, and microbial metabolite analyses. In particular, the rapid chemical reaction owing to both the hydrogel form of water retention and the sensitive color change of nanoparticles enables the rapid detection of target substances. Despite this advantage, the poor dispersibility of nanoparticles and the mechanical strength of nanoparticle-hydrogel complexes have limited their application. In this study, we demonstrate a milliliter agarose gel containing homogeneously synthesized polyaniline nanoparticles (PAni-NPs), referred to as PAni-NP-hydrogel complexes (PNHCs). To fabricate the optimal PNHC, we tested various pH solvents based on distilled water and phosphate-buffered saline and studied the colorimetric response of the PNHC with thickness. The colorimetric response of the prepared PNHC to the changes in the pH of the solution demonstrated excellent linearity, suggesting the possibility of using PNHC as a pH sensor. In addition, it was verified that the PNHC could detect minute pH changes caused by the cancer cell metabolites without cytotoxicity. Furthermore, the PNHC can be stably maintained outside water for approximately 12 h without deformation, indicating that it can be used as a disposable patch-type wearable biosensing platform.

9.
Mater Today Bio ; 14: 100241, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35313446

RESUMO

Redox activity is known to regulate migration, invasion, metastasis, proliferation, and vascularization of cancer. Because cancer is heterogeneous, the role of redox activity in different cancers and cancer-related processes vary widely. In this study, water soluble, Tween 80-coated polyaniline (TPAni) nanoparticles were synthesized and used as nano-agents for sensing the redox activities of various cancer cells. To identify the relationship between the redox activity and the aggressiveness of cancer cells, two different cancer cell lines, derived from the same tissue but different with regards to aggressiveness, were selected for study. First, the cancer cell lines were incubated with TPAni nanoparticles, and an absorbance ratio obtained from the cell culture media was used as a colorimetric indicator of the redox activities of the cells. Simultaneously, hydrophobically modified filter papers coated with silver nanosnowflakes (SNSF) were used as sensing substrates for surface enhanced Raman scattering (SERS). SERS spectra obtained from varying concentrations of rhodamine 6G were used to confirm the detection limit of the SNSF-based SERS substrate. Cell culture media containing TPAni nanoparticles were treated with the SNSF-containing SERS substrates to examine the redox activities of the various cancer cell lines.The redox activities of cancer cell lines were confirmed by absorbance spectral analysis, and these redox activities were better identified via an SERS analysis method. A SNSF-containing SERS substrate, fabricated from SNSF and filter paper, was used to sense redox activity in cancer cell lines and to further identify correlations between redox activity and cancer cell line aggressiveness, as indicated by the use of EpCAM as a biomarker. Finally, potential of â€‹in vivo â€‹redox activity sensing was also confirmed.

10.
Anal Chem ; 93(45): 14996-15004, 2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-34736319

RESUMO

The conventional tissue biopsy method yields isolated snapshots of a narrow region. Therefore, it cannot facilitate comprehensive disease characterization and monitoring. Recently, the detection of tumor-derived components in body fluids─a practice known as liquid biopsy─has attracted increased attention from the biochemical research and clinical application viewpoints. In this vein, surface-enhanced Raman scattering (SERS) has been identified as one of the most powerful liquid-biopsy analysis techniques, owing to its high sensitivity and specificity. Moreover, it affords high-capacity spectral multiplexing for simultaneous target detection and a unique ability to obtain intrinsic biomolecule-fingerprint spectra. This paper presents the fabrication of silver nanosnowflakes (SNSFs) using the polyol method and their subsequent dropping onto a hydrophobic filter paper. The SERS substrate, which comprises the SNSFs and hydrophobic filter paper, facilitates the simultaneous detection of creatinine and cortisol in human sweat using a hand-held Raman spectrometer. The proposed SERS system affords Raman spectrometry to be performed on small sample volumes (2 µL) to identify the normal and at-risk creatinine and cortisol groups.


Assuntos
Nanopartículas Metálicas , Prata , Creatinina , Humanos , Hidrocortisona , Análise Espectral Raman , Suor
11.
Anal Chim Acta ; 1158: 338387, 2021 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-33863418

RESUMO

For the diabetes diagnosis, noninvasive methods are preferred to invasive methods; urine glucose measurement is an example of a noninvasive method. However, conventional noninvasive methods for urine glucose measurement are not intuitive. Furthermore, such methods exhibit low selectivity because they can detect interfering molecules in addition to glucose. Herein, we fabricate a noninvasive, intuitive, and highly selective paper sensor consisting of polyaniline nanoparticles (PAni-NPs) and red blood cell membranes (RBCMs). The PAni-NPs (adsorbed on the paper) are highly sensitive to hydrogen ions and change color from emeraldine blue to emeraldine green within a few seconds. The RBCM (coated on the PAni-NP-adsorbed paper) having the glucose transporter-1 protein plays the role of a smart filter that transports glucose but rejects other interfering molecules. In particular, the selectivity of the RBCM-coated PAni-NP-based paper sensor was approximately improved ∼85%, compared to the uncoated paper sensors. The paper sensor could detect urine glucose over the range of 0-10 mg/mL (0-56 mM), with a limit of detection of 0.54 mM. The proposed paper sensor will facilitate the development of a highly selective and colorimetric urine glucose monitoring system.


Assuntos
Colorimetria , Nanopartículas , Compostos de Anilina , Glicemia , Automonitorização da Glicemia , Glucose
12.
J Mater Chem B ; 9(14): 3131-3135, 2021 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-33725071

RESUMO

Herein, lipid-coated polyaniline (LiPAni) nanoparticles were fabricated to monitor the redox state of cancer cells. To confirm the characteristics of LiPAni, we firstly analyzed the size and chemical structures of the LiPAni nanoparticles. The absorbance properties of the LiPAni nanoparticles were observed to vary with the pH conditions. Furthermore, cell viability tests conducted with breast cancer cell lines showed that the cell viability of the cells with LiPAni nanoparticles was dramatically increased compared to those with the Tween80-coated polyaniline nanoparticles (TPAni) as a control. Subsequently, the colors of the LiPAni nanoparticles were observed and analyzed using spectroscopic methods. Finally, in order to investigate the more accurate sensing of the redox state using the color changes of the LiPAni nanoparticles with cancer cell lines, dark field microscopic images and scattering spectra were recorded at the single nanoparticle scale. For the TPAni nanoparticles, there was only a change in brightness and no change in color, but for the LiPAni nanoparticles, there was a change of color from yellow to pink in the dark field images.


Assuntos
Compostos de Anilina/química , Neoplasias do Colo/diagnóstico por imagem , Colorimetria , Lipídeos/química , Nanopartículas/química , Linhagem Celular Tumoral , Humanos , Imagem Óptica , Oxirredução
13.
Nanoscale Res Lett ; 15(1): 215, 2020 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-33185744

RESUMO

Polyaniline nanoskein (PANS), which have polyaniline nanofibers, was developed. PANS was formulated via sequential extracting, heating, and swelling processes. The compositions of PANS have been analyzed using X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, thermogravimetric analysis, and Brunauer-Emmett-Teller analysis, and the results of which indicate that PANS is composed of solely organic materials. Moreover, PANS has been shown convertible absorbance characteristics according to surrounding acidic environments, and using these characteristics, the possibility of PANS for sensing of surrounding redox state changes is presented.

14.
J Mater Chem B ; 8(47): 10739-10743, 2020 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-33103709

RESUMO

We have successfully fabricated a nanocomposite, which is composed of polyaniline (PAni) and pyrene butyric acid (Pyba) via a solvent shift method, which was self-doped at a neutral pH value. This PAni nanocomposite can act as a fine nanoagent expressing absorbance, fluorescence, and Raman properties according to the surrounding pH values.


Assuntos
Compostos de Anilina/química , Compostos de Anilina/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Nanocompostos/química , Compostos de Anilina/metabolismo , Ácido Butírico/química , Ácido Butírico/metabolismo , Ácido Butírico/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/fisiologia , Humanos , Nanopartículas/química , Nanopartículas/metabolismo , Oxirredução/efeitos dos fármacos , Polissorbatos/química , Polissorbatos/metabolismo , Polissorbatos/farmacologia
15.
Nanotechnology ; 31(21): 215706, 2020 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-32032003

RESUMO

The surface potential of nanoparticles plays a key role in numerous applications, such as drug delivery and cellular uptake. The estimation of the surface potential of nanoparticles as drug carriers or contrast agents is important for the design of nanoparticle-based biomedical platforms. Herein, we report the direct measurement of the surface potential of individual gold nanorods (GNRs) via Kelvin probe force microscopy (KPFM) at the nanoscale. GNRs were capped by a surfactant, cetyltrimethylammonium bromide (CTAB), which was removed by centrifugation. CTAB removal is essential for GNR-based biomedical applications because of the cytotoxicity of CTAB. Applying KPFM analysis, we found that the mean surface potential of the GNRs became more negative as the CTAB was removed from the GNR. The results indicate that the negative charge of GNRs is covered by the electrostatic charge of the CTAB molecules. Similar trends were observed in experiments with gold nanospheres (GNS) capped by citrates. Overall, KPFM-based techniques characterize the surfactant of individual nanoparticles (i.e. GNR or GNS) with high resolution by mapping the surface potential of a single nanoparticle, which aids in designing engineered nanoparticles for biomedical applications.

16.
Nanotechnology ; 29(34): 345604, 2018 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-29848798

RESUMO

Amyloid aggregates have emerged as a significant hallmark of neurodegenerative diseases such as Alzheimer's and Parkinson's diseases. Although it has been recently reported that microwave heating induces amyloid aggregation compared with conventional heating methods, the mechanism of amyloid aggregate induction has remained unclear. In this study, we investigated the formation of oligomeric amyloid aggregates (OAAs) by microwave irradiation at microscale volumes of solution. Microwave irradiation of protein monomer solution triggered rapid formation of OAAs within 7 min. We characterized the formation of OAAs using atomic force microscopy, thioflavin T fluorescent assay and circular dichroism. In the microwave system, we also investigated the inhibitory effect on the formation of amyloid aggregates by L-ascorbic acid as well as enhanced amyloid aggregation by silver nanomaterials such as nanoparticles and nanowires. We believe that microwave technology has the potential to facilitate the study of amyloid aggregation in the presence of chemical agents or nanomaterials.


Assuntos
Amiloide/química , Micro-Ondas , Agregados Proteicos , Dicroísmo Circular , Lactoglobulinas/química , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Prata/química
17.
Nanotechnology ; 29(21): 215501, 2018 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-29513274

RESUMO

In this paper, we describe the development of a nanoplasmonic biosensor based on the localized surface plasmon resonance (LSPR) effect that enables a sensitive and selective recognition of copper II ions. First, we fabricated the nanoplasmonics as LSPR substrates using gold nanorods (GNR) and the nano-adsorption method. The LSPR sensitivity of the nanoplasmonics was evaluated using various solvents with different refractive indexes. Subsequently, D-penicillamine (DPA)-a chelating agent of copper II ions-was conjugated to the surface of the GNR. The limit of detection (LOD) for the DPA-conjugated nanoplasmonics was 100 pM. Furthermore, selectivity tests were conducted using various divalent cations, and sensitivity tests were conducted on the nanoplasmonics under blood-like environments. Finally, the developed nanoplasmonic biosensor based on GNR shows great potential for the effective recognition of copper II ions, even in human blood conditions.

18.
ACS Appl Mater Interfaces ; 8(25): 15937-47, 2016 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-27267787

RESUMO

Near-infrared (NIR) fluorophores attract increasing attention as a molecular marker (or probe) for in vivo and in vitro biological fluorescence imaging. Three types of new NIR fluorescent conjugated oligoelectrolytes (COEs: Q-FlTBTTFl, Q-FlBBTFl, and Q-FlTBBTTFl) are synthesized with quaternized ammonium ionic groups in their side-chains for water solubility. The emission wavelength is modulated in the range 600-1300 nm, by adjusting the intramolecular charge transfer in the molecular backbone based on the electron-rich fluorene (and/or thiophene) and electron-deficient benzo[2,1,3]thiadiazole (or benzo[1,2-c:4,5-c']bis[1,2,5]thiadiazole) moieties. The COEs show a remarkably larger Stokes shift (147-276 nm) compared to commercial rhodamine and cyanine dyes in water, avoiding self-quenching and interference from the excitation backscattered light. The photoluminescence (PL) quantum efficiency is improved substantially by up to 27.8% in water by fabricating a vesicular complex, COE/v, with a block ionomer, poly[(ethylene oxide)-block-(sodium 2-acrylamido-2-methyl-1-propanesulfonate)]. In vitro cellular uptake images with the COEs are obtained with good biocompatibility by confocal single-photon and two-photon microscopy. The ex vivo and in vivo images of a mouse xenograft model treated with the Q-FlBBTFl/v exhibit a substantially stronger fluorescence signal at the tumor site than at the other organs, highlighting the potential of the COE/v as an NIR fluorescent imaging agent for the diagnosis of cancer.


Assuntos
Eletrólitos/síntese química , Corantes Fluorescentes/síntese química , Imagem Óptica/métodos , Água/química , Animais , Eletrólitos/química , Corantes Fluorescentes/química , Camundongos , Neoplasias/diagnóstico por imagem
19.
Nanotechnology ; 27(22): 225101, 2016 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-27098318

RESUMO

Stem-like cancer cells possess intrinsic features and their CD44 regulate redox balance in cancer cells to survive under stress conditions. Thus, we have fabricated biomarker-specific conjugated polyplexes using CD44-targetable hyaluronic acid and redox-sensible polyaniline based on a nanoemulsion method. For the most sensitive recognition of the cellular redox at a single nanoparticle scale, a nano-scattering spectrum imaging analyzer system was introduced. The conjugated polyplexes showed a specific targeting ability toward CD44-expressing cancer cells as well as a dramatic change in its color, which depended on the redox potential in the light-scattered images. Therefore, these polyaniline-based conjugated polyplexes as well as analytical processes that include light-scattering imaging and measurements of scattering spectra, clearly establish a systematic method for the detection and monitoring of cancer microenvironments.


Assuntos
Biomarcadores Tumorais/química , Linhagem Celular Tumoral , Humanos , Receptores de Hialuronatos , Ácido Hialurônico , Nanopartículas , Células-Tronco Neoplásicas , Oxirredução
20.
Nanotechnology ; 27(18): 185103, 2016 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-27009431

RESUMO

We describe an in vitro biomarker sensor based on immuno-silver nanomarbles (iSNMs) and the nanoscattering spectrum imaging analysis system using localized surface plasmon resonance (LSPR). In particular, highly monodisperse SNMs with large figures of merit are prepared, and the sensing substrates are also fabricated using the nanoparticle adsorption method. The high sensitivity of the LSPR sensor based on an SNM is confirmed using various solvents that have different refractive indexes. For the sensitive and specific detection of epithelial cell adhesion molecules (EpCAMs) expressed on cancer cells, the surface of the SNM is conjugated with an anti-EpCAM aptamer, and molecular sensing for the EpCAM expression level is carried out using whole cell lysates from various cancer cell lines. Collectively, we have developed a biomarker-detectable LSPR sensor based on iSNMs, which allows for the sensitive and effective detection of EpCAMs at both the single-cell and femto-molar level.


Assuntos
Aptâmeros de Peptídeos/metabolismo , Biomarcadores Tumorais/metabolismo , Molécula de Adesão da Célula Epitelial/metabolismo , Neoplasias/metabolismo , Prata/química , Aptâmeros de Peptídeos/química , Técnicas Biossensoriais , Linhagem Celular Tumoral , Humanos , Células MCF-7 , Nanopartículas Metálicas/química , Análise de Célula Única , Ressonância de Plasmônio de Superfície/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...