Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 22(23)2022 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-36501996

RESUMO

Sleep accounts for one-third of an individual's life and is a measure of health. Both sleep time and quality are essential, and a person requires sound sleep to stay healthy. Generally, sleep patterns are influenced by genetic factors and differ among people. Therefore, analyzing whether individual sleep patterns guarantee sufficient sleep is necessary. Here, we aimed to acquire information regarding the sleep status of individuals in an unconstrained and unconscious state to consequently classify the sleep state. Accordingly, we collected data associated with the sleep status of individuals, such as frequency of tosses and turns, snoring, and body temperature, as well as environmental data, such as room temperature, humidity, illuminance, carbon dioxide concentration, and ambient noise. The sleep state was classified into two stages: nonrapid eye movement and rapid eye movement sleep, rather than the general four stages. Furthermore, to verify the validity of the sleep state classifications, we compared them with heart rate.


Assuntos
Fases do Sono , Ronco , Humanos , Fases do Sono/fisiologia , Sono REM/fisiologia , Sono , Inconsciência
2.
Sensors (Basel) ; 22(14)2022 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-35891066

RESUMO

We present a multi-sensor data fusion model based on a reconfigurable module (RM) with three fusion layers. In the data layer, raw data are refined with respect to the sensor characteristics and then converted into logical values. In the feature layer, a fusion tree is configured, and the values of the intermediate nodes are calculated by applying predefined logical operations, which are adjustable. In the decision layer, a final decision is made by computing the value of the root according to predetermined equations. In this way, with given threshold values or sensor characteristics for data refinement and logic expressions for feature extraction and decision making, we reconstruct an RM that performs multi-sensor fusion and is adaptable for a dedicated application. We attempted to verify its feasibility by applying the proposed RM to an actual application. Considering the spread of the COVID-19 pandemic, an unmanned storage box was selected as our application target. Four types of sensors were used to determine the state of the door and the status of the existence of an item inside it. We implemented a prototype system that monitored the unmanned storage boxes by configuring the RM according to the proposed method. It was confirmed that a system built with only low-cost sensors can identify the states more reliably through multi-sensor data fusion.


Assuntos
COVID-19 , Pandemias , Humanos
3.
Sensors (Basel) ; 21(2)2021 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-33419094

RESUMO

To meet password selection criteria of a server, a user occasionally needs to provide multiple choices of password candidates to an on-line password meter, but such user-chosen candidates tend to be derived from the user's previous passwords-the meter may have a high chance to acquire information about a user's passwords employed for various purposes. A third party password metering service may worsen this threat. In this paper, we first explore a new on-line password meter concept that does not necessitate the exposure of user's passwords for evaluating user-chosen password candidates in the server side. Our basic idea is straightforward; to adapt fully homomorphic encryption (FHE) schemes to build such a system but its performance achievement is greatly challenging. Optimization techniques are necessary for performance achievement in practice. We employ various performance enhancement techniques and implement the NIST (National Institute of Standards and Technology) metering method as seminal work in this field. Our experiment results demonstrate that the running time of the proposed meter is around 60 s in a conventional desktop server, expecting better performance in high-end hardware, with an FHE scheme in HElib library where parameters support at least 80-bit security. We believe the proposed method can be further explored and used for a password metering in case that password secrecy is very important-the user's password candidates should not be exposed to the meter and also an internal mechanism of password metering should not be disclosed to users and any other third parties.

4.
Sensors (Basel) ; 20(12)2020 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-32575661

RESUMO

We want to predict body weight while lying in bed for an elderly patient who is unable to move by himself/herself. To this end, we have implemented a prototype system that estimates the body weight of a person lying on a smart mat in nonrestraint and unconsciousness conditions. A total of 128 FSR (force sensing resistor) sensors were placed in a 16 × 8-grid structure on the smart mat. We formulated three methods based on the features to be applied: segmentation, average cumulative sum of pressure, and serialization. All the proposed methods were implemented with four different machine-learning models: regression, deep neural network (DNN), convolutional neural network (CNN), and random forest. We compared their performance using MAE and RMSE as evaluation criteria. From the experimental results, we chose the serialization method with the DNN model as the best model. Despite the limitations of the presence of dead space due to the wide spacing between the sensors and the small dataset, the MAE and the RMSE of the body weight prediction of the proposed method was 4.608 and 5.796, respectively. That is, it showed an average error of ±4.6 kg for the average weight of 72.9 kg.


Assuntos
Peso Corporal , Aprendizado Profundo , Aprendizado de Máquina , Idoso , Leitos , Humanos , Monitorização Fisiológica , Redes Neurais de Computação , Inconsciência
5.
Sensors (Basel) ; 17(3)2017 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-28257112

RESUMO

The Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA) procedure of IEEE 802.15.6 Medium Access Control (MAC) protocols for the Wireless Body Area Network (WBAN) use an Alternative Binary Exponential Backoff (ABEB) procedure. The backoff algorithm plays an important role to avoid collision in wireless networks. The Binary Exponential Backoff (BEB) algorithm used in different standards does not obtain the optimum performance due to enormous Contention Window (CW) gaps induced from packet collisions. Therefore, The IEEE 802.15.6 CSMA/CA has developed the ABEB procedure to avoid the large CW gaps upon each collision. However, the ABEB algorithm may lead to a high collision rate (as the CW size is incremented on every alternative collision) and poor utilization of the channel due to the gap between the subsequent CW. To minimize the gap between subsequent CW sizes, we adopted the Prioritized Fibonacci Backoff (PFB) procedure. This procedure leads to a smooth and gradual increase in the CW size, after each collision, which eventually decreases the waiting time, and the contending node can access the channel promptly with little delay; while ABEB leads to irregular and fluctuated CW values, which eventually increase collision and waiting time before a re-transmission attempt. We analytically approach this problem by employing a Markov chain to design the PFB scheme for the CSMA/CA procedure of the IEEE 80.15.6 standard. The performance of the PFB algorithm is compared against the ABEB function of WBAN CSMA/CA. The results show that the PFB procedure adopted for IEEE 802.15.6 CSMA/CA outperforms the ABEB procedure.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...