Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 63(25): e202404177, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38634766

RESUMO

Long-lasting radioluminescence scintillators have recently attracted substantial attention from both research and industrial communities, primarily due to their distinctive capabilities of converting and storing X-ray energy. However, determination of energy-conversion kinetics in these nanocrystals remains unexplored. Here we present a strategy to probe and unveil energy-funneling kinetics in NaLuF4:Mn2+/Gd3+ nanocrystal sublattices through Gd3+-driven microenvironment engineering and Mn2+-mediated radioluminescence profiling. Our photophysical studies reveal effective control of energy-funneling kinetics and demonstrate the tunability of electron trap depth ranging from 0.66 to 0.96 eV, with the corresponding trap density varying between 2.38×105 and 1.34×107 cm-3. This enables controlled release of captured electrons over durations spanning from seconds to 30 days. It allows tailorable emission wavelength within the range of 520-580 nm and fine-tuning of thermally-stimulated temperature between 313-403 K. We further utilize these scintillators to fabricate high-density, large-area scintillation screens that exhibit a 6-fold improvement in X-ray sensitivity, 22 lp/mm high-resolution X-ray imaging, and a 30-day-long optical memory. This enables high-contrast imaging of injured mice through fast thermally-stimulated radioluminescence readout. These findings offer new insights into the correlation of radioluminescence dynamics with energy-funneling kinetics, thereby contributing to the advancement of high-energy nanophotonic applications.

2.
Adv Mater ; 35(52): e2309413, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37950585

RESUMO

X-ray imaging plays an increasingly crucial role in clinical radiography, industrial inspection, and military applications. However, current X-ray imaging technologies have difficulty in protecting against information leakage caused by brute force attacks via trial-and-error. Here high-confidentiality X-ray imaging encryption by fabricating ultralong radioluminescence memory films composed of lanthanide-activated nanoscintillators (NaLuF4 : Gd3+ or Ce3+ ) with imperceptible purely-ultraviolet (UV) emission is reported. Mechanistic investigations unveil that ultralong X-ray memory is attributed to the long-lived trapping of thermalized charge carriers within Frenkel defect states and subsequent slow release in the form of imperceptible radioluminescence. The encrypted X-ray imaging can be securely stored in the memory film for more than 7 days and optically decoded by perovskite nanocrystal. Importantly, this encryption strategy can protect X-ray imaging information against brute force trial-and-error attacks through the perception of lifetime change in the persistent radioluminescence. It is further demonstrated that the as-fabricated flexible memory film enables achieving of 3D X-ray imaging encryption of curved objects with a high spatial resolution of 20 lp/mm and excellent recyclability. This study provides valuable insights into the fundamental understanding of X-ray-to-UV conversion in nanocrystal lattices and opens up a new avenue toward the development of high-confidential 3D X-ray imaging encryption technologies.

3.
Acc Chem Res ; 56(1): 37-51, 2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36533853

RESUMO

X-ray luminescence is an optical phenomenon in which chemical compounds known as scintillators can emit short-wavelength light upon the excitation of X-ray photons. Since X-rays exhibit well-recognized advantages of deep penetration toward tissues and a minimal autofluorescence background in biological samples, X-ray luminescence has been increasingly becoming a promising optical tool for tackling the challenges in the fields of imaging, biosensing, and theragnostics. In recent years, the emergence of nanocrystal scintillators have further expanded the application scenarios of X-ray luminescence, such as high-resolution X-ray imaging, autofluorescence-free detection of biomarkers, and noninvasive phototherapy in deep tissues. Meanwhile, X-ray luminescence holds great promise in breaking the depth dependency of deep-seated lesion treatment and achieving synergistic radiotherapy with phototherapy.In this Account, we provide an overview of recent advances in developing advanced X-ray luminescence for applications in imaging, biosensing, theragnostics, and optogenetics neuromodulation. We first introduce solution-processed lead halide all-inorganic perovskite nanocrystal scintillators that are able to convert X-ray photons to multicolor X-ray luminescence. We have developed a perovskite nanoscintillator-based X-ray detector for high-resolution X-ray imaging of the internal structure of electronic circuits and biological samples. We further advanced the development of flexible X-ray luminescence imaging using solution-processable lanthanide-doped nanoscintillators featuring long-lived X-ray luminescence to image three-dimensional irregularly shaped objects. We also outline the general principles of high-contrast in vivo X-ray luminescence imaging which combines nanoscintillators with functional biomolecules such as aptamers, peptides, and antibodies. High-quality X-ray luminescence nanoprobes were engineered to achieve the high-sensitivity detection of various biomarkers, which enabled the avoidance of interference from the biological matrix autofluorescence and photon scattering. By marrying X-ray luminescence probes with stimuli-responsive materials, multifunctional theragnostic nanosystems were constructed for on-demand synergistic gas radiotherapy with excellent therapeutic effects. By taking advantage of the capability of X-rays to penetrate the skull, we also demonstrated the development of controllable, wireless optogenetic neuromodulation using X-ray luminescence probes while obviating damage from traditional optical fibers. Furthermore, we discussed in detail some challenges and future development of X-ray luminescence in terms of scintillator synthesis and surface modification, mechanism studies, and their other potential applications to provide useful guidance for further advancing the development of X-ray luminescence.


Assuntos
Luminescência , Raios X , Biomarcadores , Diagnóstico por Imagem , Técnicas Biossensoriais , Técnicas de Diagnóstico Molecular
4.
Nano Lett ; 22(22): 9045-9053, 2022 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-36326607

RESUMO

Cell temperature monitoring is of great importance to uncover temperature-dependent intracellular events and regulate cellular functions. However, it remains a great challenge to precisely probe the localized temperature status in living cells. Herein, we report a strategy for in situ temperature mapping on an immune cell membrane for the first time, which was achieved by using the lanthanide-doped upconversion nanoparticles. The nanothermometer was designed to label the cell membrane by combining metabolic labeling and click chemistry and can leverage ratiometric upconversion luminescence signals to in situ sensitively monitor temperature variation (1.4% K-1). Moreover, a purpose-built upconversion hyperspectral microscope was utilized to synchronously map temperature changes on T cell membrane and visualize intracellular Ca2+ influx. This strategy was able to identify a suitable temperature status for facilitating thermally stimulated calcium influx in T cells, thus enabling high-efficiency activation of immune cells. Such findings might advance understandings on thermally dependent biological processes and their regulation methodology.


Assuntos
Elementos da Série dos Lantanídeos , Nanopartículas , Termografia , Luminescência , Membrana Celular
5.
Front Chem ; 10: 1052574, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36385989

RESUMO

Solution-processed scintillators hold great promise in fabrication of low-cost X-ray detectors. However, state of the art of these scintillators is still challenging in their environmental toxicity and instability. In this study, we develop a class of tetradecagonal CuI microcrystals as highly stable, eco-friendly, and low-cost scintillators that exhibit intense radioluminescence under X-ray irradiation. The red broadband emission is attributed to the recombination of self-trapped excitons in CuI microcrystals. We demonstrate the incorporation of such CuI microscintillator into a flexible polymer to fabricate an X-ray detector for high-resolution imaging with a spatial resolution up to 20 line pairs per millimeter (lp mm-1), which enables sharp image effects by attaching the flexible imaging detectors onto curved object surfaces.

6.
ACS Appl Mater Interfaces ; 14(36): 41275-41282, 2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36064330

RESUMO

X-ray imaging and computed tomography (CT) technology, as the important non-destructive measurements, can observe internal structures without destroying the detected sample, which are always used in biological diagnosis to detect tumors, pathologies, and bone damages. It is always a challenge to find materials with a low detection limit, a short exposure time, and high resolution to reduce X-ray damage and acquire high-contrast images. Here, we described a low-cost and high-efficient method to prepare centimeter-sized anthracene crystals, which exhibited intense X-ray radioluminescence with a detection limit of ∼0.108 µGy s-1, which is only one-fifth of the dose typically used for X-ray diagnostics. Additionally, the low absorption reduced the damage in radiation and ensured superior cycle performance. X-ray detectors based on anthracene crystals also exhibited an extremely high resolution of 40 lp mm-1. The CT scanning and reconstruction of a foam sample were then achieved, and the detailed internal structure could be clearly observed. These indicated that organic crystals are expecting to be leading candidate low-cost materials for low-dose and highly sensitive X-ray detection and CT scanning.

7.
Anal Chem ; 94(5): 2641-2647, 2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35085437

RESUMO

Ultrasmall gold nanoclusters (AuNCs) are emerging as promising luminescent nanoprobes for bioimaging due to their fantastic photoluminescence (PL) and renal-clearable ability. However, it remains a great challenge to design them for in vivo sensitive molecular imaging in desired tissues. Herein, we have developed a strategy to tailor the PL and biofate of near-infrared II (NIR-II)-emitting AuNCs via ligand anchoring for improved bioimaging. By optimizing the ligand types in AuNCs and using Er3+-doped lanthanide (Ln) nanoparticles as models, core-satellite Ln@AuNCs assemblies were rationally constructed, which enabled 2.5-fold PL enhancement of AuNCs at 1100 nm and prolonged blood circulation compared to AuNCs. Significantly, Ln@AuNCs with dual intense NIR-II PL (from AuNCs and Er3+) can effectively accumulate in the liver for ratiometric NIR-II imaging of H2S, facilitated by H2S-mediated selective PL quenching of AuNCs. We have then demonstrated the real-time imaging evaluation of liver delivery efficacy and dynamics of two H2S prodrugs. This shows a paradigm to visualize liver H2S delivery and its prodrug screening in vivo. Note that Ln@AuNCs are body-clearable via the hepatobiliary excretion pathway, thus reducing potential long-term toxicity. Such findings may propel the engineering of AuNC nanoprobes for advancing in vivo bioimaging analysis.


Assuntos
Elementos da Série dos Lantanídeos , Nanopartículas Metálicas , Ouro , Luminescência , Imagem Óptica
8.
Adv Mater ; 33(25): e2101852, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33988874

RESUMO

Solution-processed metal-halide perovskites hold great promise in developing next-generation low-cost, high-performance photodetectors. However, the weak absorption of perovskites beyond the near-infrared spectral region posts a stringent limitation on their use for broadband photodetectors. Here, the rational design and synthesis of an upconversion nanoparticles (UCNPs)-perovskite nanotransducer are presented, namely UCNPs@mSiO2 @MAPbX3 (X = Cl, Br, or I), for broadband photon detection spanning from X-rays, UV, to NIR. It is demonstrated that, by in situ crystallization and deliberately tuning the material composition in the lanthanide core and perovskites, the nanotransducers allow for a high stability and show a wide linear response to X-rays of various dose rates, as well as UV/NIR photons of various power densities. The findings provide an opportunity to explore the next-generation broadband photodetectors in the field of high-quality imaging and optoelectronic devices.

9.
Nature ; 590(7846): 410-415, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33597760

RESUMO

Current X-ray imaging technologies involving flat-panel detectors have difficulty in imaging three-dimensional objects because fabrication of large-area, flexible, silicon-based photodetectors on highly curved surfaces remains a challenge1-3. Here we demonstrate ultralong-lived X-ray trapping for flat-panel-free, high-resolution, three-dimensional imaging using a series of solution-processable, lanthanide-doped nanoscintillators. Corroborated by quantum mechanical simulations of defect formation and electronic structures, our experimental characterizations reveal that slow hopping of trapped electrons due to radiation-triggered anionic migration in host lattices can induce more than 30 days of persistent radioluminescence. We further demonstrate X-ray luminescence extension imaging with resolution greater than 20 line pairs per millimetre and optical memory longer than 15 days. These findings provide insight into mechanisms underlying X-ray energy conversion through enduring electron trapping and offer a paradigm to motivate future research in wearable X-ray detectors for patient-centred radiography and mammography, imaging-guided therapeutics, high-energy physics and deep learning in radiology.

10.
Research (Wash D C) ; 2021: 9892152, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35028585

RESUMO

X-ray imaging is a low-cost, powerful technology that has been extensively used in medical diagnosis and industrial nondestructive inspection. The ability of X-rays to penetrate through the body presents great advances for noninvasive imaging of its internal structure. In particular, the technological importance of X-ray imaging has led to the rapid development of high-performance X-ray detectors and the associated imaging applications. Here, we present an overview of the recent development of X-ray imaging-related technologies since the discovery of X-rays in the 1890s and discuss the fundamental mechanism of diverse X-ray imaging instruments, as well as their advantages and disadvantages on X-ray imaging performance. We also highlight various applications of advanced X-ray imaging in a diversity of fields. We further discuss future research directions and challenges in developing advanced next-generation materials that are crucial to the fabrication of flexible, low-dose, high-resolution X-ray imaging detectors.

11.
Anal Chem ; 91(15): 10149-10155, 2019 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-31305067

RESUMO

Optical biosensors that enable highly sensitive detection of biomolecules are useful for applications in early disease diagnosis. However, the presence of UV-vis-induced background fluorescence in biological samples is still challenging. Thanks to the weak scattering and nearly no absorption of biological chromophores under X-ray excitation, we describe the development of an X-ray nanocrystal scintillator-based aptasensor that is able to achieve sensitive and homogeneous detection of target biomolecules. In this work, aptamer-labeled lanthanide-doped nanocrystal scintillators was designed to rapidly and sensitively detect lysozyme via fluorescence resonance energy transfer (FRET) in human serum samples. Benefiting from the use of low-dose X-ray as an excitation source and high-efficiency luminescence of heavy atoms-contained nanocrystals, the proposed X-ray nanocrystal scintillator-based aptasensor can readily detect lysozyme with a high sensitivity up to 0.94 nM, as well as an excellent specificity and sample recoveries. Thus, our technique suggests that the X-ray scintillating aptasensor can create a new generation of autofluorescence-free high-sensitivity strategy for biomarker sensing in biomedical applications.


Assuntos
Aptâmeros de Nucleotídeos/química , Técnicas Biossensoriais/métodos , Transferência Ressonante de Energia de Fluorescência/métodos , Fluorescência , Muramidase/sangue , Nanopartículas/química , Humanos , Raios X
12.
ACS Appl Mater Interfaces ; 11(11): 10589-10596, 2019 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-30816032

RESUMO

Conventional photosensitizer-based photodynamic therapy is triggered by UV-light irradiation and depends on oxygen. However, it is hard to be applied to the deep and hypoxic tumor. To address this issue, we reported a new kind of g-C3N4 nanosheet decorated with gold nanoparticles (AuNPs), which could generate a high amount of reactive oxygen species (ROS) under a 670 nm laser irradiation in an oxygen-free environment. This synthesized semiconductor-metal heterojunction served as a superior photodynamic agent, showing prominent cancer cell-killing and tumor growth-suppressing effects in the presence of a 670 nm light and g-C3N4-AuNP composites, and its excellent ROS generation property was also validated by further bactericidal experiment.


Assuntos
Ouro/química , Lasers , Nanopartículas Metálicas/química , Nanoestruturas/química , Nitrilas/química , Fármacos Fotossensibilizantes/química , Espécies Reativas de Oxigênio/metabolismo , Animais , Catálise , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Hemólise/efeitos dos fármacos , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Fotoquimioterapia , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Espécies Reativas de Oxigênio/química , Transplante Heterólogo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...