Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cells Dev ; : 203918, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38574816

RESUMO

Increased brain size and its rostral bias are hallmarks of vertebrate evolution, but the underlying developmental and genetic basis remains poorly understood. To provide clues to understanding vertebrate brain evolution, we investigated the developmental mechanisms of brain enlargement observed in the offspring of a previously unrecognized, spontaneously occurring female variant line of Xenopus that appears to reflect a genetic variation. Brain enlargement in larvae from this line showed a pronounced rostral bias that could be traced back to the neural plate, the primordium of the brain. At the gastrula stage, the Spemann organizer, which is known to induce the neural plate from the adjacent dorsal ectoderm and give it the initial rostrocaudal patterning, was expanded from dorsal to ventral in a large proportion of the offspring of variant females. Consistently, siamois expression, which is required for Spemann organizer formation, was expanded laterally from dorsal to ventral at the blastula stage in variant offspring. This implies that the active region of the Wnt/ß-catenin signaling pathway was similarly expanded in advance on the dorsal side, as siamois is a target gene of this pathway. Notably, the earliest detectable change in variant offspring was in fertilized eggs, in which maternal wnt11b mRNA, a candidate dorsalizing factor responsible for activating Wnt/ß-catenin signaling in the dorsal embryonic region, had a wider distribution in the vegetal cortical cytoplasm. Since lateral spreading of wnt11b mRNA, and possibly that of other potential maternal dorsalizing factors in these eggs, is expected to facilitate lateral expansion of the active region of the Wnt/ß-catenin pathway during subsequent embryonic stages, we concluded that aberrant Wnt/ß-catenin signaling could cause rostral-biased brain enlargement via expansion of siamois expression and consequent expansion of the Spemann organizer in Xenopus. Our studies of spontaneously occurring variations in brain development in Xenopus would provide hints for uncovering genetic mutations that drive analogous morphogenetic variations during vertebrate brain evolution.

2.
Cells Dev ; 170: 203769, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35217246

RESUMO

FGF and anti-BMP signals from the Spemann organizer of mesodermal origin are essential for Xenopus neural development from gastrula ectoderm. However, the detailed cellular and molecular mechanisms of signaling, especially those underlying the neural induction process, are still controversial. We show here that the expression of early neural marker genes such as sox2 and otx2 is suppressed both in vivo and in vitro, when ectoderm cells are loaded with a dominant-negative construct of Ets transcription factors or a translation-blocking antisense FGF2 MO or FGF8 MO, respectively. This indicates that the expression of these FGF signaling molecules in ectoderm cells contributes significantly to neural induction, in contrast to the "neural default model" that has been emphasized, in which anti-BMP signaling from the organizer plays a major role in the neural induction in Xenopus. Our results indicate that cell-autonomous FGF signaling between ectoderm cells, rather than paracrine signaling from organizer cells, directly induces the expression of sox2 and otx2 via the FGF2, FGF8/MAPK/Ets pathway at very low signaling levels. This is independent of inhibiting BMP signaling via the FGF/MAPK/Smad pathway, which has been proposed as the primary pathway for FGF signaling in Xenopus neural induction. Using cultured ectoderm cells, we also obtained results suggesting that the mode of contribution of FGF signaling to neural development is altered during the subsequent neural patterning stage. As we increase the amounts of FGF in the culture medium, anterior neural genes activated at low FGF signaling levels are suppressed, and instead position-specific, more posterior neural genes are activated in a dose-dependent manner via the FGF/MAPK/Ets pathway. These results support the claim that morphogenic FGFs from the organizer diffuse in a paracrine manner through the plane of the induced neuroectoderm, causing anteroposterior patterning of neural tissue.


Assuntos
Ectoderma , Fator 2 de Crescimento de Fibroblastos , Animais , Fator 2 de Crescimento de Fibroblastos/metabolismo , Fatores de Crescimento de Fibroblastos/genética , Gástrula/metabolismo , Xenopus laevis/genética
3.
Dev Growth Differ ; 52(5): 469-79, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20507360

RESUMO

All-trans retinoic acid is a key regulator of early development. High concentrations of retinoic acid interfere with differentiation and migration of neural crest cells. Here we report that a dinucleotide repeat in the cis-element of Snail2 (previously known as Slug) gene plays a role in repression by all-trans retinoic acid. We analyzed the cis-acting regulatory regions of the Xenopus Snail2 gene, whose expression is repressed by all-trans retinoic acid. The analysis identified a TG/CA repeat as a necessary element for the repression. By performing a yeast one-hybrid screen, we found that a polypyrimidine tract-binding protein (PTB), which is known to be a regulator of the alternative splicing of pre-messenger RNA, binds to the TG/CA repeat. Overexpression and knockdown experiments for PTB in HEK293 cells and Xenopus embryos indicated that PTB is required for repression by retinoic acid. The green fluorescent protein-PTB fusion protein was localized in the nucleus of 293T cells. In situ hybridization for PTB in Xenopus embryos showed that PTB is expressed at the regions including neural crest at the early stages. Our results indicate that PTB plays a role in the repression of gene expression by retinoic acid through binding to the TG/CA repeats.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Proteína de Ligação a Regiões Ricas em Polipirimidinas/fisiologia , Fatores de Transcrição/genética , Tretinoína/farmacologia , Proteínas de Peixe-Zebra/genética , Processamento Alternativo , Animais , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/genética , Proteína de Ligação a Regiões Ricas em Polipirimidinas/genética , Proteína de Ligação a Regiões Ricas em Polipirimidinas/metabolismo , RNA Mensageiro/metabolismo , Fatores de Transcrição da Família Snail , Xenopus laevis
4.
Dev Growth Differ ; 48(9): 575-85, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17118012

RESUMO

Using a subtracted Xenopus cDNA library based on the differential sensitivity of anterior and posterior genes to retinoic acid, we isolated a novel Xenopus nuclear GTP-binding protein (XGB). XGB is expressed prominently in the optic primordia at the tailbud stage. The N-terminal region of XGB contains a set of GTP-binding protein motifs, and the C-terminal region contains two putative nuclear localization signals and two coiled regions. A GFP-XGB fusion protein was expressed in the nucleus of NIH3T3 cells where it bound to subnuclear structures. Truncated C-terminal constructs of XGB containing both nuclear localization signal(s) and coiled region(s) suppressed eye formation, whereas neither the N-terminal construct nor constructs with a mutated GTP-binding protein motif affected eye formation. Expression of Pax6 and Rx1 genes, which are crucial for eye development, was reduced in embryos overexpressing the C-terminal constructs of XGB. Suppression of Pax6 and Rx1 at earlier developmental stages as well as perturbation of eye formation at later stages was counteracted by co-expression of wild-type XGB. We conclude that XGB plays a role in the formation of optic primordia through activation of at least two eye field transcription factors.


Assuntos
Olho/embriologia , Proteínas de Ligação ao GTP/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus/embriologia , Sequência de Aminoácidos , Animais , DNA Complementar , Embrião não Mamífero , Desenvolvimento Embrionário/genética , Olho/metabolismo , Proteínas de Ligação ao GTP/genética , Regulação da Expressão Gênica no Desenvolvimento , Genes Homeobox , Dados de Sequência Molecular , Xenopus/genética , Proteínas de Xenopus/genética
5.
Dev Biol ; 277(2): 508-21, 2005 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-15617690

RESUMO

Krox-20, originally identified as a member of "immediate-early" genes, plays a crucial role in the formation of two specific segments in the hindbrain during early development of the vertebrate nervous system. Here we cloned a genomic sequence of Xenopus Krox-20 (XKrox-20) and studied functions of a promoter element in the flanking sequence and associated transcription factors, which function in early Xenopus embryos. Using the luciferase reporter assay system, we showed that the 5' flanking sequence was sufficient to induce luciferase activities when the reporter construct was injected into embryos at the eight-cell stage. Deletion and mutagenesis analyses of the 5' flanking sequence revealed a minimal promoter element that included two known subelements, a CArG-box and cAMP response element (CRE) within a stretch of 22 bp nucleotide sequence (-72 to -51 from the transcription initiation site), both of which were essential for the promoter activity. The gel mobility shift assay indicated that these two subelements bound to some components in whole cell extracts prepared from stage 20 Xenopus embryos. Antibody supershift and competition experiments revealed that these components in cell extracts were serum response factor (SRF) and a member of CRE binding protein (CREB) family proteins that bound the CArG-box and CRE, respectively. They appeared to assemble on the minimal promoter element to produce a novel ternary complex. When we injected mRNA of a dominant-negative version of Xenopus SRF (XSRFDeltaC) into animal pole blastomeres at the eight-cell stage, expression of XKrox-20 in the nervous system as well as the minimal promoter activity was strongly suppressed. Suppression by XSRFDeltaC was counteracted by coexpressed wild-type XSRF. These results indicate that XSRF functions as an endogenous activator of XKrox-20 by forming a ternary complex with CREB on the minimal promoter element.


Assuntos
Encéfalo/embriologia , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Fator de Resposta Sérica/metabolismo , Fatores de Transcrição/metabolismo , Xenopus laevis/embriologia , Animais , Blastômeros/metabolismo , Encéfalo/metabolismo , Clonagem Molecular , Primers do DNA , Proteína 2 de Resposta de Crescimento Precoce , Ensaio de Desvio de Mobilidade Eletroforética , Componentes do Gene , Hibridização In Situ , Luciferases/metabolismo , Microinjeções , Técnicas de Amplificação de Ácido Nucleico , Plasmídeos/genética , Regiões Promotoras Genéticas/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Transcrição/genética , Xenopus laevis/metabolismo
6.
Development ; 130(20): 4907-17, 2003 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12930781

RESUMO

Early neural patterning along the anteroposterior (AP) axis appears to involve a number of signal transducing pathways, but the precise role of each of these pathways for AP patterning and how they are integrated with signals that govern neural induction step is not well understood. We investigate the nature of Fgf response element (FRE) in a posterior neural gene, Xcad3 (Xenopus caudal homologue) that plays a crucial role of posterior neural development. We provide evidence that FREs of Xcad3 are widely dispersed in its intronic sequence and that these multiple FREs comprise Ets-binding and Tcf/Lef-binding motifs that lie in juxtaposition. Functional and physical analyses indicate that signaling pathways of Fgf, Bmp and Wnt are integrated on these FREs to regulate the expression of Xcad3 in the posterior neural tube through positively acting Ets and Sox family transcription factors and negatively acting Tcf family transcription factor(s).


Assuntos
Proteínas Fetais/metabolismo , Fatores de Crescimento de Fibroblastos/fisiologia , Elementos de Resposta/fisiologia , Transdução de Sinais/fisiologia , Proteínas de Xenopus , Animais , Sequência de Bases , Proteínas de Ligação a DNA/metabolismo , Proteínas HMGB/metabolismo , Dados de Sequência Molecular , Proteínas Nucleares/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-ets , Fatores de Transcrição SOXB1 , Medula Espinal/embriologia , Medula Espinal/metabolismo , Fatores de Transcrição TCF , Proteína 1 Semelhante ao Fator 7 de Transcrição , Fatores de Transcrição/metabolismo , Xenopus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...