Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur Neuropsychopharmacol ; 25(11): 2108-17, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26361739

RESUMO

We previously identified a novel molecule "SHATI/NAT8L" that exerts an inhibitory effect on methamphetamine (METH)-induced behavioral deficits. Recently, it has been reported that SHATI might function as an aspartate N-acetyltransferase, which synthesizes N-acetylaspartate (NAA) in vitro. However, whether SHATI actually synthesizes NAA in vivo in the brain is still unclear. In this study, we found that both Shati-deleted mice showed significantly lower NAA levels in all brain areas than wild-type (Shati(+/+)) mice using HPLC and fluorescence detection, suggesting that SHATI regulates NAA content in the brain. Next, we measured the levels of monoamines and their metabolites in the adult mouse brain and found that the activities of monoaminergic systems were altered in Shati(-/-) mice. In particular, dopaminergic turnover increased in the nucleus accumbens (NAc) in Shati(-/-) mice, suggesting activation of the dopaminergic system. In fact, basal level of extracellular dopamine, and METH-induced dopamine release in the NAc of Shati(-/-) mice was significantly higher than that of Shati(+/+) and Shati(+/-) mice, which is consistent with findings that Shati(-/-) mice showed enhanced hyperlocomotion induced by METH. Moreover, in the forced swimming test, Shati-deleted mice showed a shortened immobility time, which was improved by intracerebroventricular (i.c.v.) administration of NAA prior to the test in Shati(+/-) but not in Shati(-/-) mice. The i.c.v. preinjection of NAA inhibited dopamine release after high K(+) stimulation in the NAc of Shati(+/+) and Shati(+/-) mice, but not Shati(-/-) mice. These results suggested that the behavioral deficits in Shati-deleted mice were caused by dopaminergic abnormality via deprivation of NAA.


Assuntos
Acetiltransferases/deficiência , Ácido Aspártico/análogos & derivados , Encéfalo/metabolismo , Acetiltransferases/genética , Animais , Ácido Aspártico/administração & dosagem , Ácido Aspártico/metabolismo , Monoaminas Biogênicas/metabolismo , Encéfalo/efeitos dos fármacos , Fármacos do Sistema Nervoso Central/farmacologia , Cromatografia Líquida de Alta Pressão , Metanfetamina/farmacologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microdiálise , Atividade Motora/efeitos dos fármacos , Atividade Motora/fisiologia , Distribuição Aleatória , Comportamento Social
2.
J Nutr Sci Vitaminol (Tokyo) ; 58(6): 377-83, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23419395

RESUMO

Several lines of evidence demonstrate the relationship between vitamin E deficiency and cognitive dysfunction in rodent models, but little is known about the underlying mechanisms. In this study, we found axonal injury in the hippocampal CA1 region of vitamin E-deficient and normal old mice using immunohistochemical assay. The number of cells in the hippocampal CA1 region of vitamin E-deficient mice and normal old mice was significantly lower than in normal young mice. It is well known that collapsin response mediator protein (CRMP)-2 plays a crucial role in the maintenance of axonal conditions. The expressions of CRMP-2 in the cerebral cortex and hippocampus of vitamin E-deficient mice were significantly lower than both the regions of normal ones. In normal old mice, the expression of CRMP-2 in the cerebral cortex was significantly lower than in the normal ones. In addition, the appearance of microtubule-associated protein (MAP)-light chain 3 (LC3), a major index of autophagy, was higher in the cerebral cortex and hippocampus of vitamin E-deficient mice than in normal young and old mice. These results indicate that axonal degeneration is induced in living tissues, but not cultured cells, and that changes in CRMP-2 and MAP-LC3 may underlie vitamin E-deficiency-related axonal degeneration.


Assuntos
Axônios/patologia , Hipocampo/citologia , Degeneração Neural/patologia , Neurônios/patologia , Deficiência de Vitamina E/sangue , Deficiência de Vitamina E/patologia , Animais , Autofagia , Células Cultivadas , Córtex Cerebral/patologia , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...