Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Science ; 380(6646): 758-764, 2023 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-37200435

RESUMO

Zebrafish hearts can regenerate by replacing damaged tissue with new cardiomyocytes. Although the steps leading up to the proliferation of surviving cardiomyocytes have been extensively studied, little is known about the mechanisms that control proliferation and redifferentiation to a mature state. We found that the cardiac dyad, a structure that regulates calcium handling and excitation-contraction coupling, played a key role in the redifferentiation process. A component of the cardiac dyad called leucine-rich repeat-containing 10 (Lrrc10) acted as a negative regulator of proliferation, prevented cardiomegaly, and induced redifferentiation. We found that its function was conserved in mammalian cardiomyocytes. This study highlights the importance of the underlying mechanisms required for heart regeneration and their application to the generation of fully functional cardiomyocytes.


Assuntos
Cálcio , Coração , Miócitos Cardíacos , Regeneração , Sarcômeros , Peixe-Zebra , Animais , Cálcio/fisiologia , Proliferação de Células , Coração/fisiologia , Miócitos Cardíacos/fisiologia , Sarcômeros/fisiologia , Peixe-Zebra/fisiologia
2.
Development ; 148(18)2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34397091

RESUMO

Zebrafish are excellent at regenerating their heart by reinitiating proliferation in pre-existing cardiomyocytes. Studying how zebrafish achieve this holds great potential in developing new strategies to boost mammalian heart regeneration. Nevertheless, the lack of appropriate live-imaging tools for the adult zebrafish heart has limited detailed studies into the dynamics underlying cardiomyocyte proliferation. Here, we address this by developing a system in which cardiac slices of the injured zebrafish heart are cultured ex vivo for several days while retaining key regenerative characteristics, including cardiomyocyte proliferation. In addition, we show that the cardiac slice culture system is compatible with live timelapse imaging and allows manipulation of regenerating cardiomyocytes with drugs that normally would have toxic effects that prevent their use. Finally, we use the cardiac slices to demonstrate that adult cardiomyocytes with fully assembled sarcomeres can partially disassemble their sarcomeres in a calpain- and proteasome-dependent manner to progress through nuclear division and cytokinesis. In conclusion, we have developed a cardiac slice culture system, which allows imaging of native cardiomyocyte dynamics in real time to discover cellular mechanisms during heart regeneration.


Assuntos
Proliferação de Células/fisiologia , Miócitos Cardíacos/fisiologia , Peixe-Zebra/fisiologia , Animais , Animais Geneticamente Modificados/metabolismo , Animais Geneticamente Modificados/fisiologia , Calpaína/metabolismo , Núcleo Celular/metabolismo , Núcleo Celular/fisiologia , Células Cultivadas , Citocinese/fisiologia , Feminino , Coração/fisiologia , Masculino , Mamíferos/metabolismo , Mamíferos/fisiologia , Miócitos Cardíacos/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Complexo de Endopeptidases do Proteassoma/fisiologia , Regeneração/fisiologia , Sarcômeros/metabolismo , Sarcômeros/fisiologia , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/metabolismo
3.
Elife ; 82019 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-31868166

RESUMO

While the heart regenerates poorly in mammals, efficient heart regeneration occurs in zebrafish. Studies in zebrafish have resulted in a model in which preexisting cardiomyocytes dedifferentiate and reinitiate proliferation to replace the lost myocardium. To identify which processes occur in proliferating cardiomyocytes we have used a single-cell RNA-sequencing approach. We uncovered that proliferating border zone cardiomyocytes have very distinct transcriptomes compared to the nonproliferating remote cardiomyocytes and that they resemble embryonic cardiomyocytes. Moreover, these cells have reduced expression of mitochondrial genes and reduced mitochondrial activity, while glycolysis gene expression and glucose uptake are increased, indicative for metabolic reprogramming. Furthermore, we find that the metabolic reprogramming of border zone cardiomyocytes is induced by Nrg1/ErbB2 signaling and is important for their proliferation. This mechanism is conserved in murine hearts in which cardiomyocyte proliferation is induced by activating ErbB2 signaling. Together these results demonstrate that glycolysis regulates cardiomyocyte proliferation during heart regeneration.


Assuntos
Proliferação de Células , Reprogramação Celular/fisiologia , Coração/fisiologia , Miócitos Cardíacos/metabolismo , Regeneração/fisiologia , Transdução de Sinais/fisiologia , Análise de Célula Única/métodos , Peixe-Zebra/crescimento & desenvolvimento , Animais , Animais Geneticamente Modificados , Reprogramação Celular/genética , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Genes erbB-2/genética , Genes erbB-2/fisiologia , Glicólise , Coração/embriologia , Hexoquinase/genética , Hexoquinase/metabolismo , Masculino , Camundongos , Modelos Animais , Miocárdio/metabolismo , Miócitos Cardíacos/citologia , Neuregulina-1/genética , Regeneração/genética , Transdução de Sinais/genética , Peixe-Zebra/embriologia , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...