Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Med Image Anal ; 91: 103043, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38029722

RESUMO

Magnetic Resonance Imaging provides unprecedented images of the brain. Unfortunately, scanners and acquisition protocols can significantly impact MRI scans. The development of statistical methods able to reduce this variability without altering the relevant information in the scans, often coined harmonization methods, has been the topic of an increasing research effort supported by the recent growth of publicly available neuroimaging data sets and new possibilities for combining them to achieve greater statistical power. In this work, we focus on the challenges specifically raised by the harmonization of resting-state functional MRI scans. We propose to harmonize resting-state fMRI scans by reducing the impact of covariates such as scanner differences and scanning protocols on their associated functional connectomes and then propagating the changes back to the rs-fMRI time series. We use Riemannian geometric frameworks to preserve the mathematical properties of functional connectomes during their harmonization, and we demonstrate how state-of-the-art harmonization methods can be embedded within these frameworks to reduce covariates effects while preserving the relevant clinical information associated with aging or brain disorders. During our experiments, a large set of synthetic data was generated and processed to compare eighty variants of the proposed approach. The framework achieving the best harmonization was then applied to three low-dimensional data sets made of 712 sets of fMRI time series provided by the ABIDE consortium and two high-dimensional data sets obtained by processing 1527 rs-fMRI scans provided by the Human Connectome Project, the Framingham Heart Study and the Genetics of Brain Structure and Function study. These experiments established that our new framework could successfully harmonize low-dimensional connectomes and voxelwise functional time series and confirmed the need for preserving connectomes properties during their harmonization.


Assuntos
Conectoma , Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Conectoma/métodos
2.
J Alzheimers Dis ; 96(3): 1267-1283, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37955086

RESUMO

BACKGROUND: Neuroimaging bears the promise of providing new biomarkers that could refine the diagnosis of dementia. Still, obtaining the pathology data required to validate the relationship between neuroimaging markers and neurological changes is challenging. Existing data repositories are focused on a single pathology, are too small, or do not precisely match neuroimaging and pathology findings. OBJECTIVE: The new data repository introduced in this work, the South Texas Alzheimer's Disease research center repository, was designed to address these limitations. Our repository covers a broad diversity of dementias, spans a wide age range, and was specifically designed to draw exact correspondences between neuroimaging and pathology data. METHODS: Using four different MRI sequences, we are reaching a sample size that allows for validating multimodal neuroimaging biomarkers and studying comorbid conditions. Our imaging protocol was designed to capture markers of cerebrovascular disease and related lesions. Quantification of these lesions is currently underway with MRI-guided histopathological examination. RESULTS: A total of 139 postmortem brains (70 females) with mean age of 77.9 years were collected, with 71 brains fully analyzed. Of these, only 3% showed evidence of AD-only pathology and 76% had high prevalence of multiple pathologies contributing to clinical diagnosis. CONCLUSION: This repository has a significant (and increasing) sample size consisting of a wide range of neurodegenerative disorders and employs advanced imaging protocols and MRI-guided histopathological analysis to help disentangle the effects of comorbid disorders to refine diagnosis, prognosis and better understand neurodegenerative disorders.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Feminino , Humanos , Idoso , Doença de Alzheimer/patologia , Texas/epidemiologia , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Neuroimagem/métodos , Imageamento por Ressonância Magnética , Doenças Neurodegenerativas/patologia , Biomarcadores
3.
Neuroimage ; 269: 119929, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36740029

RESUMO

Deep neural networks currently provide the most advanced and accurate machine learning models to distinguish between structural MRI scans of subjects with Alzheimer's disease and healthy controls. Unfortunately, the subtle brain alterations captured by these models are difficult to interpret because of the complexity of these multi-layer and non-linear models. Several heatmap methods have been proposed to address this issue and analyze the imaging patterns extracted from the deep neural networks, but no quantitative comparison between these methods has been carried out so far. In this work, we explore these questions by deriving heatmaps from Convolutional Neural Networks (CNN) trained using T1 MRI scans of the ADNI data set and by comparing these heatmaps with brain maps corresponding to Support Vector Machine (SVM) activation patterns. Three prominent heatmap methods are studied: Layer-wise Relevance Propagation (LRP), Integrated Gradients (IG), and Guided Grad-CAM (GGC). Contrary to prior studies where the quality of heatmaps was visually or qualitatively assessed, we obtained precise quantitative measures by computing overlap with a ground-truth map from a large meta-analysis that combined 77 voxel-based morphometry (VBM) studies independently from ADNI. Our results indicate that all three heatmap methods were able to capture brain regions covering the meta-analysis map and achieved better results than SVM activation patterns. Among them, IG produced the heatmaps with the best overlap with the independent meta-analysis.


Assuntos
Doença de Alzheimer , Humanos , Neuroimagem/métodos , Redes Neurais de Computação , Imageamento por Ressonância Magnética/métodos , Encéfalo/fisiologia
4.
Neuroimage ; 256: 119229, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35460918

RESUMO

Connectomes derived from resting-state functional MRI scans have significantly benefited from the development of dedicated fMRI motion correction and denoising algorithms. But they are based on empirical correlations that can produce unreliable results in high dimension low sample size settings. A family of statistical estimators, the covariance shrinkage methods, could mitigate this issue. Unfortunately, these methods have rarely been used to correct functional connectomes and no extensive experiment has been conducted so far to compare the shrinkage methods available for this task. In this work, we propose to fix this issue by processing a benchmark dataset made of a thousand high-resolution resting-state fMRI scans provided by the Human Connectome Project to compare the ability of five prominent covariance shrinkage methods to produce reliable functional connectomes at different spatial resolutions and scans duration: the pioneer linear covariance shrinkage method introduced by Ledoit and Wolf, the Oracle Approximating Shrinkage, the QuEST method, the NERCOME method, and a recent analytical approximation of the QuEST approach. Our experiments establish that all covariance shrinkage methods significantly improve functional connectomes derived from short fMRI scans. The Oracle Approximating Shrinkage and the QuEST method produced the best results. Lastly, we present shrinkage intensity charts that can be used for designing and analyzing fMRI studies. These charts indicate that sparse connectomes are difficult to estimate from short fMRI scans, and they describe a range of settings where dynamic functional connectivity should not be computed.


Assuntos
Conectoma , Algoritmos , Encéfalo/diagnóstico por imagem , Conectoma/métodos , Humanos , Imageamento por Ressonância Magnética/métodos , Movimento (Física)
5.
Artigo em Inglês | MEDLINE | ID: mdl-33558196

RESUMO

BACKGROUND: Individuals with alcohol use disorder (AUD) have a heightened risk of contracting HIV infection. The effects of these two diseases and their comorbidity on brain structure have been well described, but their effects on brain function have never been investigated at the scale of whole-brain connectomes. METHODS: In contrast with prior studies that restricted analyses to specific brain networks or examined relatively small groups of participants, our analyses are based on whole-brain functional connectomes of 292 participants. RESULTS: Relative to participants without AUD, the functional connectivity between the anterior cingulate cortex and orbitofrontal cortex was lower for participants with AUD. Compared with participants without AUD+HIV comorbidity, the functional connectivity between the anterior cingulate cortex and hippocampus was lower for the AUD+HIV participants. Compromised connectivity between these pairs was significantly correlated with greater total lifetime alcohol consumption; the effects of total lifetime alcohol consumption on executive functioning were significantly mediated by the functional connectivity between the pairs. CONCLUSIONS: Taken together, our results suggest that the functional connectivity of the anterior cingulate cortex is disrupted in individuals with AUD alone and AUD with HIV infection comorbidity. Moreover, the affected connections are associated with deficits in executive functioning, including heightened impulsiveness.


Assuntos
Alcoolismo , Infecções por HIV , Humanos , Alcoolismo/complicações , Giro do Cíngulo , Infecções por HIV/complicações , Imageamento por Ressonância Magnética/métodos , Consumo de Bebidas Alcoólicas , Comorbidade
6.
Cerebellum ; 20(6): 823-835, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33655376

RESUMO

Alcohol use disorder (AUD) is widely associated with cerebellar dysfunction and altered cerebro-cerebellar functional connectivity (FC) that lead to cognitive impairments. Evidence for this association comes from resting-state functional magnetic resonance imaging (rsfMRI) studies that assess time-averaged measures of FC across the duration of a typical scan. This approach, however, precludes the assessment of potentially FC dynamics happening at faster timescales. In this study, using rsfMRI data, we aim at exploring cerebro-cerebellar FC dynamics in AUD patients (N = 18) and age- and sex-matched controls (N = 18). In particular, we quantified group-level differences in the temporal variability of FC between the posterior cerebellum and large-scale cognitive systems, and we investigated the role of the cerebellum in large-scale brain dynamics in terms of the temporal flexibility and integration of its regions. We found that, relative to controls, the AUD group exhibited significantly greater FC variability between the cerebellum and both the frontoparietal executive control (F1,31 = 7.01, p(FDR) = 0.028) and ventral attention (F1,31 = 7.35, p(FDR) = 0.028) networks. Moreover, the AUD group exhibited significantly less flexibility (F1,31 = 8.61, p(FDR) = 0.028) and greater integration (F1,31 = 9.11, p(FDR) = 0.028) in the cerebellum. Finally, in an exploratory analysis, we found distributed changes in the dynamics of canonical large-scale networks in AUD. Overall, this study brings evidence of AUD-related alterations in dynamic FC within major cerebro-cerebellar networks. This pattern has implications for explaining the development and maintenance of this disorder and improving our understating of the cerebellum's involvement in addiction.


Assuntos
Alcoolismo , Cerebelo , Imageamento por Ressonância Magnética , Alcoolismo/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Cerebelo/diagnóstico por imagem , Função Executiva , Humanos
7.
Drug Alcohol Depend ; 220: 108509, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33453503

RESUMO

The extant literature supports the involvement of the thalamus in the cognitive and motor impairment associated with chronic alcohol consumption, but clear structure/function relationships remain elusive. Alcohol effects on specific nuclei rather than the entire thalamus may provide the basis for differential cognitive and motor decline in Alcohol Use Disorder (AUD). This functional MRI (fMRI) study was conducted in 23 abstinent individuals with AUD and 27 healthy controls to test the hypothesis that functional connectivity between anterior thalamus and hippocampus would be compromised in those with an AUD diagnosis and related to mnemonic deficits. Functional connectivity between 7 thalamic structures [5 thalamic nuclei: anterior ventral (AV), mediodorsal (MD), pulvinar (Pul), ventral lateral posterior (VLP), and ventral posterior lateral (VPL); ventral thalamus; the entire thalamus] and 14 "functional regions" was evaluated. Relative to controls, the AUD group exhibited different VPL-based functional connectivity: an anticorrelation between VPL and a bilateral middle temporal lobe region observed in controls became a positive correlation in the AUD group; an anticorrelation between the VPL and the cerebellum was stronger in the AUD than control group. AUD-associated altered connectivity between anterior thalamus and hippocampus as a substrate of memory compromise was not supported; instead, connectivity differences from controls selective to VPL and cerebellum demonstrated a relationship with impaired balance. These preliminary findings support substructure-level evaluation in future studies focused on discerning the role of the thalamus in AUD-associated cognitive and motor deficits.


Assuntos
Abstinência de Álcool , Alcoolismo/diagnóstico por imagem , Cerebelo/diagnóstico por imagem , Vias Neurais/diagnóstico por imagem , Tálamo/diagnóstico por imagem , Adulto , Estudos de Casos e Controles , Disfunção Cognitiva/diagnóstico por imagem , Feminino , Hipocampo/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade
8.
JAMA Psychiatry ; 78(4): 407-415, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33377940

RESUMO

Importance: Maturation of white matter fiber systems subserves cognitive, behavioral, emotional, and motor development during adolescence. Hazardous drinking during this active neurodevelopmental period may alter the trajectory of white matter microstructural development, potentially increasing risk for developing alcohol-related dysfunction and alcohol use disorder in adulthood. Objective: To identify disrupted adolescent microstructural brain development linked to drinking onset and to assess whether the disruption is more pronounced in younger rather than older adolescents. Design, Setting, and Participants: This case-control study, conducted from January 13, 2013, to January 15, 2019, consisted of an analysis of 451 participants from the National Consortium on Alcohol and Neurodevelopment in Adolescence cohort. Participants were aged 12 to 21 years at baseline and had at least 2 usable magnetic resonance diffusion tensor imaging (DTI) scans and up to 5 examination visits spanning 4 years. Participants with a youth-adjusted Cahalan score of 0 were labeled as no-to-low drinkers; those with a score of greater than 1 for at least 2 consecutive visits were labeled as heavy drinkers. Exploratory analysis was conducted between no-to-low and heavy drinkers. A between-group analysis was conducted between age- and sex-matched youths, and a within-participant analysis was performed before and after drinking. Exposures: Self-reported alcohol consumption in the past year summarized by categorical drinking levels. Main Outcomes and Measures: Diffusion tensor imaging measurement of fractional anisotropy (FA) in the whole brain and fiber systems quantifying the developmental change of each participant as a slope. Results: Analysis of whole-brain FA of 451 adolescents included 291 (64.5%) no-to-low drinkers and 160 (35.5%) heavy drinkers who indicated the potential for a deleterious association of alcohol with microstructural development. Among the no-to-low drinkers, 142 (48.4%) were boys with mean (SD) age of 16.5 (2.2) years and 149 (51.2%) were girls with mean (SD) age of 16.5 (2.1) years and 192 (66.0%) were White participants. Among the heavy drinkers, 86 (53.8%) were boys with mean (SD) age of 20.1 (1.5) years and 74 (46.3%) were girls with mean (SD) age of 20.5 (2.0) years and 142 (88.8%) were White participants. A group analysis revealed FA reduction in heavy-drinking youth compared with age- and sex-matched controls (t154 = -2.7, P = .008). The slope of this reduction correlated with log of days of drinking since the baseline visit (r156 = -0.21, 2-tailed P = .008). A within-participant analysis contrasting developmental trajectories of youths before and after they initiated heavy drinking supported the prediction that drinking onset was associated with and potentially preceded disrupted white matter integrity. Age-alcohol interactions (t152 = 3.0, P = .004) observed for the FA slopes indicated that the alcohol-associated disruption was greater in younger than older adolescents and was most pronounced in the genu and body of the corpus callosum, regions known to continue developing throughout adolescence. Conclusions and Relevance: This case-control study of adolescents found a deleterious association of alcohol use with white matter microstructural integrity. These findings support the concept of heightened vulnerability to environmental agents, including alcohol, associated with attenuated development of major white matter tracts in early adolescence.


Assuntos
Desenvolvimento do Adolescente , Alcoolismo , Lobo Frontal , Consumo de Álcool por Menores , Substância Branca , Adolescente , Desenvolvimento do Adolescente/fisiologia , Adulto , Alcoolismo/complicações , Alcoolismo/diagnóstico por imagem , Alcoolismo/patologia , Anisotropia , Estudos de Casos e Controles , Criança , Imagem de Tensor de Difusão , Feminino , Lobo Frontal/diagnóstico por imagem , Lobo Frontal/crescimento & desenvolvimento , Lobo Frontal/patologia , Humanos , Estudos Longitudinais , Masculino , Vias Neurais/diagnóstico por imagem , Vias Neurais/crescimento & desenvolvimento , Vias Neurais/patologia , Substância Branca/diagnóstico por imagem , Substância Branca/crescimento & desenvolvimento , Substância Branca/patologia , Adulto Jovem
9.
Addict Biol ; 26(2): e12914, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32428984

RESUMO

Exogenous causes, such as alcohol use, and endogenous factors, such as temperament and sex, can modulate developmental trajectories of adolescent neurofunctional maturation. We examined how these factors affect sexual dimorphism in brain functional networks in youth drinking below diagnostic threshold for alcohol use disorder (AUD). Based on the 3-year, annually acquired, longitudinal resting-state functional magnetic resonance imaging (MRI) data of 526 adolescents (12-21 years at baseline) from the National Consortium on Alcohol and Neurodevelopment in Adolescence (NCANDA) cohort, developmental trajectories of 23 intrinsic functional networks (IFNs) were analyzed for (1) sexual dimorphism in 259 participants who were no-to-low drinkers throughout this period; (2) sex-alcohol interactions in two age- and sex-matched NCANDA subgroups (N = 76 each), half no-to-low, and half moderate-to-heavy drinkers; and (3) moderating effects of gender-specific alcohol dose effects and a multifactorial impulsivity measure on IFN connectivity in all NCANDA participants. Results showed that sex differences in no-to-low drinkers diminished with age in the inferior-occipital network, yet girls had weaker within-network connectivity than boys in six other networks. Effects of adolescent alcohol use were more pronounced in girls than boys in three IFNs. In particular, girls showed greater within-network connectivity in two motor networks with more alcohol consumption, and these effects were mediated by sensation-seeking only in girls. Our results implied that drinking might attenuate the naturally diminishing sexual differences by disrupting the maturation of network efficiency more severely in girls. The sex-alcohol-dose effect might explain why women are at higher risk of alcohol-related health and psychosocial consequences than men.


Assuntos
Consumo de Bebidas Alcoólicas/efeitos adversos , Comportamento Impulsivo/efeitos dos fármacos , Transtornos do Neurodesenvolvimento/induzido quimicamente , Adolescente , Envelhecimento/fisiologia , Criança , Relação Dose-Resposta a Droga , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Transtornos do Neurodesenvolvimento/diagnóstico por imagem , Gravidade do Paciente , Caracteres Sexuais , Consumo de Álcool por Menores , Adulto Jovem
10.
Predict Intell Med ; 12329: 133-143, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33163995

RESUMO

Functional connectivity between brain regions is often estimated by correlating brain activity measured by resting-state fMRI in those regions. The impact of factors (e.g, disorder or substance use) are then modeled by their effects on these correlation matrices in individuals. A crucial step in better understanding their effects on brain function could lie in estimating connectomes, which encode the correlation matrices across subjects. Connectomes are mostly estimated by creating a single average for a specific cohort, which works well for binary factors (such as sex) but is unsuited for continuous ones, such as alcohol consumption. Alternative approaches based on regression methods usually model each pair of regions separately, which generally produces incoherent connectomes as correlations across multiple regions contradict each other. In this work, we address these issues by introducing a deep learning model that predicts connectomes based on factor values. The predictions are defined on a simplex spanned across correlation matrices, whose convex combination guarantees that the deep learning model generates well-formed connectomes. We present an efficient method for creating these simplexes and improve the accuracy of the entire analysis by defining loss functions based on robust norms. We show that our deep learning approach is able to produce accurate models on challenging synthetic data. Furthermore, we apply the approach to the resting-state fMRI scans of 281 subjects to study the effect of sex, alcohol, and HIV on brain function.

11.
Schizophr Res ; 214: 43-50, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-29274735

RESUMO

Schizophrenia is associated with heterogeneous clinical symptoms and neuroanatomical alterations. In this work, we aim to disentangle the patterns of neuroanatomical alterations underlying a heterogeneous population of patients using a semi-supervised clustering method. We apply this strategy to a cohort of patients with schizophrenia of varying extends of disease duration, and we describe the neuroanatomical, demographic and clinical characteristics of the subtypes discovered. METHODS: We analyze the neuroanatomical heterogeneity of 157 patients diagnosed with Schizophrenia, relative to a control population of 169 subjects, using a machine learning method called CHIMERA. CHIMERA clusters the differences between patients and a demographically-matched population of healthy subjects, rather than clustering patients themselves, thereby specifically assessing disease-related neuroanatomical alterations. Voxel-Based Morphometry was conducted to visualize the neuroanatomical patterns associated with each group. The clinical presentation and the demographics of the groups were then investigated. RESULTS: Three subgroups were identified. The first two differed substantially, in that one involved predominantly temporal-thalamic-peri-Sylvian regions, whereas the other involved predominantly frontal regions and the thalamus. Both subtypes included primarily male patients. The third pattern was a mix of these two and presented milder neuroanatomic alterations and comprised a comparable number of men and women. VBM and statistical analyses suggest that these groups could correspond to different neuroanatomical dimensions of schizophrenia. CONCLUSION: Our analysis suggests that schizophrenia presents distinct neuroanatomical variants. This variability points to the need for a dimensional neuroanatomical approach using data-driven, mathematically principled multivariate pattern analysis methods, and should be taken into account in clinical studies.


Assuntos
Encéfalo/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Esquizofrenia/diagnóstico por imagem , Aprendizado de Máquina Supervisionado , Adulto , Estudos de Coortes , Feminino , Humanos , Masculino , Análise Multivariada , Reconhecimento Automatizado de Padrão/métodos , Adulto Jovem
12.
Connect Neuroimaging (2019) ; 11848: 32-41, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32924030

RESUMO

The tracking of dynamic functional connectivity (dFC) states in resting-state fMRI scans aims to reveal how the brain sequentially processes stimuli and thoughts. Despite the recent advances in statistical methods, estimating the high dimensional dFC states from a small number of available time points remains a challenge. This paper shows that the challenge is reduced by linear covariance shrinkage, a statistical method used for the estimation of large covariance matrices from small number of samples. We present a computationally efficient formulation of our approach that scales dFC analysis up to full resolution resting-state fMRI scans. Experiments on synthetic data demonstrate that our approach produces dFC estimates that are closer to the ground-truth than state-of-the-art estimation approaches. When comparing methods on the rs-fMRI scans of 162 subjects, we found that our approach is better at extracting functional networks and capturing differences in rs-fMRI acquisition and diagnosis.

13.
Inf Process Med Imaging ; 11492: 867-879, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32699491

RESUMO

Resting-state functional connectivity states are often identified as clusters of dynamic connectivity patterns. However, existing clustering approaches do not distinguish major states from rarely occurring minor states and hence are sensitive to noise. To address this issue, we propose to model major states using a non-linear generative process guided by a Gaussian-mixture distribution in a low-dimensional latent space, while separately modeling the connectivity patterns of minor states by a non-informative uniform distribution. We embed this truncated Gaussian-Mixture model in a Variational Autoencoder framework to obtain a general joint clustering and outlier detection approach, tGM-VAE. When applied to synthetic data with known ground-truth, tGM-VAE is more accurate in clustering connectivity patterns than existing approaches. On the rs-fMRI of 593 healthy adolescents, tGM-VAE identifies meaningful major connectivity states. The dwell time of these states significantly correlates with age.

14.
Med Image Comput Comput Assist Interv ; 11765: 823-831, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32705091

RESUMO

While unsupervised variational autoencoders (VAE) have become a powerful tool in neuroimage analysis, their application to supervised learning is under-explored. We aim to close this gap by proposing a unified probabilistic model for learning the latent space of imaging data and performing supervised regression. Based on recent advances in learning disentangled representations, the novel generative process explicitly models the conditional distribution of latent representations with respect to the regression target variable. Performing a variational inference procedure on this model leads to joint regularization between the VAE and a neural-network regressor. In predicting the age of 245 subjects from their structural Magnetic Resonance (MR) images, our model is more accurate than state-of-the-art methods when applied to either region-of-interest (ROI) measurements or raw 3D volume images. More importantly, unlike simple feed-forward neural-networks, disentanglement of age in latent representations allows for intuitive interpretation of the structural developmental patterns of the human brain.

15.
Mol Psychiatry ; 23(12): 2314-2323, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30104727

RESUMO

Despite widespread use of cognitive behavioral therapy (CBT) in clinical practice, its mechanisms with respect to brain networks remain sparsely described. In this study, we applied tools from graph theory and network science to better understand the transdiagnostic neural mechanisms of this treatment for depression. A sample of 64 subjects was included in a study of network dynamics: 33 patients (15 MDD, 18 PTSD) received longitudinal fMRI resting state scans before and after 12 weeks of CBT. Depression severity was rated on the Montgomery-Asberg Depression Rating Scale (MADRS). Thirty-one healthy controls were included to determine baseline network roles. Univariate and multivariate regression analyses were conducted on the normalized change scores of within- and between-system connectivity and normalized change score of the MADRS. Penalized regression was used to select a sparse set of predictors in a data-driven manner. Univariate analyses showed greater symptom reduction was associated with an increased functional role of the Ventral Attention (VA) system as an incohesive provincial system (decreased between- and decreased within-system connectivity). Multivariate analyses selected between-system connectivity of the VA system as the most prominent feature associated with depression improvement. Observed VA system changes are interesting in light of brain controllability descriptions: attentional control systems, including the VA system, fall on the boundary between-network communities, and facilitate integration or segregation of diverse cognitive systems. Thus, increasing segregation of the VA system following CBT (decreased between-network connectivity) may result in less contribution of emotional attention to cognitive processes, thereby potentially improving cognitive control.


Assuntos
Terapia Cognitivo-Comportamental/métodos , Transtorno Depressivo Maior/terapia , Transtornos de Estresse Pós-Traumáticos/terapia , Adulto , Encéfalo/fisiopatologia , Mapeamento Encefálico/métodos , Depressão/terapia , Transtorno Depressivo Maior/fisiopatologia , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Pessoa de Meia-Idade , Vias Neurais/fisiopatologia , Córtex Pré-Frontal/fisiopatologia , Escalas de Graduação Psiquiátrica , Transtornos de Estresse Pós-Traumáticos/fisiopatologia
16.
Neurobiol Aging ; 71: 41-50, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30077821

RESUMO

Disentangling the heterogeneity of brain aging in cognitively normal older adults is challenging, as multiple co-occurring pathologic processes result in diverse functional and structural changes. Capitalizing on machine learning methods applied to magnetic resonance imaging data from 400 participants aged 50 to 96 years in the Baltimore Longitudinal Study of Aging, we constructed normative cross-sectional brain aging trajectories of structural and functional changes. Deviations from typical trajectories identified individuals with resilient brain aging and multiple subtypes of advanced brain aging. We identified 5 distinct phenotypes of advanced brain aging. One group included individuals with relatively extensive structural and functional loss and high white matter hyperintensity burden. Another subgroup showed focal hippocampal atrophy and lower posterior-cingulate functional coherence, low white matter hyperintensity burden, and higher medial-temporal connectivity, potentially reflecting high brain tissue reserve counterbalancing brain loss that is consistent with early stages of Alzheimer's disease. Other subgroups displayed distinct patterns. These results indicate that brain changes should not be measured seeking a single signature of brain aging but rather via methods capturing heterogeneity and subtypes of brain aging. Our findings inform future studies aiming to better understand the neurobiological underpinnings of brain aging imaging patterns.


Assuntos
Envelhecimento , Mapeamento Encefálico/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Imageamento por Ressonância Magnética , Idoso , Idoso de 80 Anos ou mais , Encéfalo/anatomia & histologia , Feminino , Humanos , Processamento de Imagem Assistida por Computador/métodos , Estudos Longitudinais , Aprendizado de Máquina , Masculino , Pessoa de Meia-Idade , Vias Neurais/anatomia & histologia , Vias Neurais/diagnóstico por imagem , Vias Neurais/fisiologia , Testes Neuropsicológicos , Substância Branca/anatomia & histologia , Substância Branca/diagnóstico por imagem , Substância Branca/fisiologia
17.
Med Image Comput Comput Assist Interv ; 10433: 407-415, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29075681

RESUMO

Brain parcellation provides a means to approach the brain in smaller regions. It also affords an appropriate dimensionality reduction in the creation of connectomes. Most approaches to creating connectomes start with registering individual scans to a template, which is then parcellated. Data processing usually ends with the projection of individual scans onto the parcellation for extracting individual biomarkers, such as connectivity signatures. During this process, registration errors can significantly alter the quality of biomarkers. In this paper, we propose to mitigate this issue with a hybrid approach for brain parcellation. We use diffusion MRI (dMRI) based structural connectivity measures to drive the refinement of an anatomical prior parcellation. Our method generates highly coherent structural parcels in native subject space while maintaining interpretability and correspondences across the population. This goal is achieved by registering a population-wide anatomical prior to individual dMRI scan and generating connectivity signatures for each voxel. The anatomical prior is then deformed by re-parcellating the brain according to the similarity between voxel connectivity signatures while constraining the number of parcels. We investigate a broad family of signature similarities known as AB-divergences and explain how a divergence adapted to our segmentation task can be selected. This divergence is used for parcellating a high-resolution dataset using two graph-based methods. The promising results obtained suggest that our approach produces coherent parcels and stronger connectomes than the original anatomical priors.


Assuntos
Algoritmos , Encéfalo/anatomia & histologia , Encéfalo/diagnóstico por imagem , Conectoma/métodos , Imagem de Difusão por Ressonância Magnética/métodos , Adulto , Conjuntos de Dados como Assunto , Humanos , Processamento de Imagem Assistida por Computador , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
18.
Inf Process Med Imaging ; 10265: 275-286, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29503515

RESUMO

The introduction of graph theory in neuroimaging has provided invaluable tools for the study of brain connectivity. These methods require the definition of a graph, which is typically derived by estimating the effective connectivity between brain regions through the optimization of an ill-posed inverse problem. Considerable efforts have been devoted to the development of methods extracting sparse connectivity graphs. The present paper aims at highlighting the benefits of an alternative approach. We investigate low-rank L2 regularized matrices recently introduced under the denomination of Riccati regularized precision matrices. We demonstrate their benefits for the analysis of cortical thickness map and the extraction of functional biomarkers from resting state fMRI scans. In addition, we explain how speed and result quality can be further improved with random projections. The promising results obtained using the Human Connectome Project dataset, as well as, the numerous possible extensions and applications suggest that Riccati precision matrices might usefully complement current sparse approaches.


Assuntos
Algoritmos , Encéfalo/diagnóstico por imagem , Conectoma , Reconhecimento Automatizado de Padrão , Humanos , Aumento da Imagem , Interpretação de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
19.
Brain ; 140(3): 735-747, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28003242

RESUMO

See Coulthard and Knight (doi:10.1093/aww335) for a scientific commentary on this article.Individuals with mild cognitive impairment and Alzheimer's disease clinical diagnoses can display significant phenotypic heterogeneity. This variability likely reflects underlying genetic, environmental and neuropathological differences. Characterizing this heterogeneity is important for precision diagnostics, personalized predictions, and recruitment of relatively homogeneous sets of patients into clinical trials. In this study, we apply state-of-the-art semi-supervised machine learning methods to the Alzheimer's disease Neuroimaging cohort (ADNI) to elucidate the heterogeneity of neuroanatomical differences between subjects with mild cognitive impairment (n = 530) and Alzheimer's disease (n = 314) and cognitively normal individuals (n = 399), thereby adding to an increasing literature aiming to establish neuroanatomical and neuropathological (e.g. amyloid and tau deposition) dimensions in Alzheimer's disease and its prodromal stages. These dimensional approaches aim to provide surrogate measures of heterogeneous underlying pathologic processes leading to cognitive impairment. We relate these neuroimaging patterns to cerebrospinal fluid biomarkers, white matter hyperintensities, cognitive and clinical measures, and longitudinal trajectories. We identified four such atrophy patterns: (i) individuals with largely normal neuroanatomical profiles, who also turned out to have the least abnormal cognitive and cerebrospinal fluid biomarker profiles and the slowest clinical progression during follow-up; (ii) individuals with classical Alzheimer's disease neuroanatomical, cognitive, cerebrospinal fluid biomarkers and clinical profile, who presented the fastest clinical progression; (iii) individuals with a diffuse pattern of atrophy with relatively less pronounced involvement of the medial temporal lobe, abnormal cerebrospinal fluid amyloid-ß1-42 values, and proportionally greater executive impairment; and (iv) individuals with notably focal involvement of the medial temporal lobe and a slow steady progression, likely representing in early Alzheimer's disease stages. These four atrophy patterns effectively define a 4-dimensional categorization of neuroanatomical alterations in mild cognitive impairment and Alzheimer's disease that can complement existing dimensional approaches for staging Alzheimer's disease using a variety of biomarkers, which offer the potential for enabling precision diagnostics and prognostics, as well as targeted patient recruitment of relatively homogeneous subgroups of subjects for clinical trials.


Assuntos
Doença de Alzheimer , Biomarcadores/líquido cefalorraquidiano , Transtornos Cognitivos , Progressão da Doença , Sintomas Prodrômicos , Doença de Alzheimer/líquido cefalorraquidiano , Doença de Alzheimer/complicações , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Análise de Variância , Apolipoproteínas E/genética , Análise por Conglomerados , Transtornos Cognitivos/líquido cefalorraquidiano , Transtornos Cognitivos/diagnóstico por imagem , Transtornos Cognitivos/etiologia , Transtornos Cognitivos/patologia , Estudos de Coortes , Estudos Transversais , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Fragmentos de Peptídeos/líquido cefalorraquidiano , Substância Branca/diagnóstico por imagem , Substância Branca/patologia , Proteínas tau/líquido cefalorraquidiano
20.
Sci Rep ; 6: 23431, 2016 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-27005843

RESUMO

Determination of fundamental mechanisms of disease often hinges on histopathology visualization and quantitative image analysis. Currently, the analysis of multi-channel fluorescence tissue images is primarily achieved by manual measurements of tissue cellular content and sub-cellular compartments. Since the current manual methodology for image analysis is a tedious and subjective approach, there is clearly a need for an automated analytical technique to process large-scale image datasets. Here, we introduce Nuquantus (Nuclei quantification utility software) - a novel machine learning-based analytical method, which identifies, quantifies and classifies nuclei based on cells of interest in composite fluorescent tissue images, in which cell borders are not visible. Nuquantus is an adaptive framework that learns the morphological attributes of intact tissue in the presence of anatomical variability and pathological processes. Nuquantus allowed us to robustly perform quantitative image analysis on remodeling cardiac tissue after myocardial infarction. Nuquantus reliably classifies cardiomyocyte versus non-cardiomyocyte nuclei and detects cell proliferation, as well as cell death in different cell classes. Broadly, Nuquantus provides innovative computerized methodology to analyze complex tissue images that significantly facilitates image analysis and minimizes human bias.


Assuntos
Núcleo Celular/metabolismo , Imunofluorescência/métodos , Processamento de Imagem Assistida por Computador/métodos , Aprendizado de Máquina , Miócitos Cardíacos/citologia , Software , Animais , Proliferação de Células , Sobrevivência Celular , Humanos , Microscopia Confocal , Miócitos Cardíacos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...