Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 30(6): 10050-10062, 2022 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-35299415

RESUMO

We investigate the influence of various optical fiber fabrication processes on the fluorescence decay of RE ions commonly used in fiber lasers and amplifiers, i.e. Yb3+, Tm3+ and Ho3+. Optical fiber preforms were prepared using the MCVD method combined with Al2O3 nanoparticle doping and subjected to subsequent heat treatment processes such as preform elongation and fiber drawing. The fluorescence decay of RE ions was measured in multiple stages of optical fiber preparation: in an original preform, in an elongated preform (cane), in a standard fiber, and in an overcladded fiber. It was found that heat treatment processing of the preforms generally leads to a faster fluorescence decay, which can be explained by the diffusion of dopants and clustering of RE ions. The fiber drawing exhibited a greater effect compared to preform elongation, which was ascribed to a faster cooling rate of the process. In general, the heat treatment of RE-doped silica glass preforms leads to the decline of fluorescence decay.

2.
Materials (Basel) ; 13(22)2020 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-33212802

RESUMO

Laser sources emitting in the infrared range at around 2 µm are attracting great interest for a variety of applications like processing of transparent thermoplastic polymers in industry as well as plenty of applications in medicine, spectroscopy, gas sensing, nonlinear frequency conversion to the mid-infrared, to mention a few. Of late, fiber lasers compared to other kinds of lasers benefit from their all-fiber design, leading to a compact, robust, and well thermally manageable device. Particularly, thulium- and holmium-doped fiber lasers are the first choice in fiber lasers emitting light around 2 µm. In this paper, we give an overview of our recent results in the research on thulium- and holmium-doped optical fibers, fiber lasers, and related research topics in the 2-µm spectral range. In particular, we present, to our knowledge, the first results of improvement of pump absorption in double-clad fibers thanks to the fiber twist frozen during drawing. Finally, a brief demonstration of material processing by thulium all-fiber laser operating at 2 µm is presented.

3.
Opt Express ; 28(9): 13601-13615, 2020 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-32403831

RESUMO

We experimentally compared for the first time, two techniques of optical fiber preform shaping based on the mechanical grinding and thermal CO2 laser processing from the point of the inner-cladding losses. The shaped preforms were fabricated of coreless pure silica technical rods as well as high purity silica Heraeus F300 rods and drawn them into coreless multimode fibers with various inner-cladding geometries coated with a low index fluorinated polymers. The background losses of the fibers were measured via the cut-back method and compared to the losses of the unshaped fibers with a circular cross-section. Results show that both preform-shaping techniques would induce additional losses in the inner-cladding. High surface scattering losses were observed in the mechanically-grinded fibers. On the other hand, the mechanical grinding retains the advantage of a significant reduction of attenuation peaks attributed to OH-groups that penetrated into the preform surface during the preform collapse. On the contrary, CO2 laser thermal-shaping provides the advantage of quick, fully automated shaping with smooth surface finish and induces much lower scattering losses, but it is not so effective in removing water penetrated surface layer of the preform so that OH-groups diffuse deeper towards the preform center. Additionally, laser thermal-shaping allows processing the preform to complex shapes which are more effective in scrambling cladding modes. Some of the absorption peaks of OH-groups and fluorinated polymers may be rather close to common pumping wavelengths and this should be considered in the design of the double-clad fibers and selection of proper shaping technology.

4.
Opt Lett ; 43(6): 1339-1342, 2018 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-29543286

RESUMO

We present a broadly tunable single-frequency ytterbium-doped fiber laser. Its broadband tunability is made possible by low resonator losses. The wavelength is determined by a grating filter, while the single-frequency regime is achieved by filtering the longitudinal modes in a fiber ring resonance filter. We obtained a tuning range from 1023 nm to 1107 nm. A feedback loop driving a fiber stretcher actuated by a piezo-element prevents mode hopping. Based on the coherent delayed self-heterodyne interferometry, the laser linewidth is estimated to be 600 Hz with feedback open and 11.7 kHz with feedback closed.

5.
Opt Express ; 25(4): 4120-4125, 2017 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-28241618

RESUMO

Self-sweeping of laser wavelength corresponding to holmium emission near 2100 nm is reported. The sweeping occurred in ~4 nm interval with rate ~0.7 nm/s from longer towards shorter wavelengths. Origins of the selection of the sweeping direction are discussed. The laser wavelength drift with time was registered by Fourier transform infrared spectrometer. To our knowledge it is the first observation of self-swept fiber laser beyond 2000 nm.

6.
Opt Lett ; 41(11): 2592-5, 2016 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-27244422

RESUMO

In this Letter, we demonstrate a graphene mode-locked, all-fiber Ho-doped fiber laser generating 1.3 nJ energy pulses directly from the oscillator. The graphene used as a saturable absorber was obtained via chemical vapor deposition on copper substrate and immersed in a poly(methyl methacrylate) support. The laser generated ultrashort soliton pulses at 2080 nm with bandwidth up to 6.1 nm. The influence of the output coupling ratio and the SA modulation depth on the mode-locking performance was also investigated.

7.
Opt Express ; 24(1): 102-7, 2016 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-26832241

RESUMO

Results of the first experimental demonstration of the recently proposed technique for improvement of the pump absorption in double-clad fibers by their simultaneous coiling and twisting are reported. The peak absorption (14 dB) of 3-m long hexagonal thulium-doped fiber was increased by 8 dB by its simultaneous coiling and twisting. Explanation of the effect is given by numerical modelling of the pump absorption in hexagonal and panda-type double-clad fibers. Improvement of fiber laser performance was also proved. The slope efficiency increased from 19.6% of the straight fiber to 23.9% of the coiled only fiber and 29.4% of the simultaneously coiled and twisted fiber.

8.
Opt Express ; 24(26): 30225-30233, 2016 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-28059298

RESUMO

We milled a sub-wavelength diffraction grating on the facet of a large mode area fiber. The diffraction grating had different reflectivities for TE and TM polarized light. It was tested in a thulium-doped fiber laser where it functioned as a low reflectivity output mirror integrated with an intracavity polarizer. Compared to the laser with a perpendicularly cleaved output fiber, the laser with diffraction grating had a slightly increased threshold power and the same slope efficiency. The beam quality factor M2 was not impaired. Polarization extinction ratios of about 20 dB that were observed at low laser powers dropped to 10 dB at high powers.

9.
Opt Lett ; 39(12): 3650-3, 2014 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-24978559

RESUMO

We have experimentally demonstrated two extremely wideband amplified spontaneous emission (ASE) sources. High bandwidth is achieved by combining the backward and forward ASEs generated in thulium-holmium-doped fiber using appropriate wideband couplers. The ASE source optimized for flat spectral power density covers a spectral range from 1527 to 2171 nm at a -10 dB level. The ASE source optimized for spectroscopy features an enhancement with respect to single-mode fiber (SMF) coupled halogen lamps within the spectral range from 1540 nm to more than 2340 nm covering the 800 nm bandwidth.


Assuntos
Hólmio , Lasers de Estado Sólido , Fibras Ópticas , Túlio , Amplificadores Eletrônicos , Tecnologia de Fibra Óptica/métodos , Fenômenos Ópticos
10.
Opt Express ; 12(24): 6046-52, 2004 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-19488246

RESUMO

The simulated annealing method is used for retrieving the amplitude and phase from cross-phase modulation spectrograms. The method allows us to take into account the birefringence of the measurement fiber and resolution of the optical spectrum analyzer. The influence of the birefringence and analyzer resolution are discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...