Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Immunol Cell Biol ; 101(5): 428-443, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36918728

RESUMO

Macrophages exhibit a range of functional pro- and anti-inflammatory states that induce changes in their cellular metabolism. We aimed to elucidate whether these changes affect the molecular properties of their circadian clock focusing on their anti-inflammatory phenotype. Primary cell cultures of bone marrow-derived macrophages (BMDMs; nonpolarized M0 BMDM) from PER2::LUC (fusion protein of PERIOD2 and LUCIFERASE) mice were polarized into the M1 (proinflammatory) or M2 (anti-inflammatory) phenotype, and PER2-driven bioluminescence was recorded in real-time at the cell-population and single-cell levels. Viability, clock gene expression profiles, polarization plasticity and peroxisome proliferator-activated receptor γ (PPARγ) protein levels were analyzed. The effects of pharmacological activation/inhibition of PPARγ (rosiglitazone/GW9662) and inhibition of fatty acid oxidation (FAO) by etomoxir in M2 BMDM cell cultures were examined. The parameters of PER2-driven bioluminescence rhythms differed between M0, M1 and M2 BMDM cultures at cell-population and single-cell levels. Compared with M0, polarization to M2 did not change the period but increased amplitude, mean bioluminescence level and rhythm persistence. Polarization to M1 shortened the period but had no effect on the amplitude of the rhythm. The same period changes were observed after a bidirectional switch between M1- and M2-polarized states in the same culture. Both PPARγ activation/inhibition and FAO inhibition modulated the clock in M2 BMDMs, suggesting metabolic regulation of the M2 clock. Our results indicate that bidirectional changes in the properties of BMDM circadian clocks in response to their actual polarization are mediated via changes in their metabolic state. They provide new information on the interrelationship between the BMDM polarization, their circadian clock and cellular metabolism.


Assuntos
Relógios Circadianos , Camundongos , Animais , PPAR gama/metabolismo , Macrófagos/metabolismo , Rosiglitazona/metabolismo , Anti-Inflamatórios/metabolismo
2.
Cell Mol Neurobiol ; 43(3): 1319-1333, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35821305

RESUMO

The activity of the immune system is controlled by circadian clocks present in different immune cells. The brain-resident subtype of immune cells, microglia, exhibits a wide range of functional phenotypes depending on the signaling molecules in their microenvironment. The exact role of microglia in the hypothalamic suprachiasmatic nuclei (SCN), the central circadian clock, has not been known. Therefore, the aim of this study was to determine (1) whether microenvironment-induced changes in microglial polarization affect circadian clocks in these cells and (2) whether the presence of microglia contributes to SCN clock function. Microglial and SCN clocks were monitored using PER2-driven bioluminescence rhythms at the tissue and single-cell levels. We found that polarization of resting microglia to a pro-inflammatory (M1) or anti-inflammatory (M2) state significantly altered the period and amplitude of their molecular circadian clock; importantly, the parameters changed plastically with the repolarization of microglia. This effect was reflected in specific modulations of the expression profiles of individual clock genes in the polarized microglia. Depletion of microglia significantly reduced the amplitude of the SCN clock, and co-cultivation of the SCN explants with M2-polarized microglia specifically improved the amplitude of the SCN clock. These results demonstrate that the presence of M2-polarized microglia has beneficial effects on SCN clock function. Our results provide new insight into the mutual interaction between immune and circadian systems in the brain.


Assuntos
Relógios Circadianos , Camundongos , Animais , Relógios Circadianos/genética , Ritmo Circadiano/fisiologia , Microglia , Núcleo Supraquiasmático/metabolismo , Encéfalo
3.
Cell Mol Life Sci ; 79(6): 318, 2022 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-35622158

RESUMO

Misaligned feeding may lead to pancreatic insufficiency, however, whether and how it affects circadian clock in the exocrine pancreas is not known. We exposed rats to a reversed restricted feeding regimen (rRF) for 10 or 20 days and analyzed locomotor activity, daily profiles of hormone levels (insulin, glucagon, and corticosterone) in plasma, and clock gene expression in the liver and endocrine and exocrine pancreas. In addition, we monitored responses of the exocrine pancreatic clock in organotypic explants of mPer2Luc mice in real time to acetylcholine, insulin, and glucocorticoids. rRF phase-reversed the clock in the endocrine pancreas, similar to the clock in the liver, but completely abolished clock gene rhythmicity and significantly downregulated the expression of Cpb1 and Cel in the exocrine pancreas. rRF desynchronized the rhythms of plasma insulin and corticosterone. Daily profiles of their receptor expression differed in the two parts of the pancreas and responded differently to rRF. Additionally, the pancreatic exocrine clock responded differently to treatments with insulin and the glucocorticoid analog dexamethasone in vitro. Mathematical simulation confirmed that the long-term misalignment between these two hormonal signals, as occurred under rRF, may lead to dampening of the exocrine pancreatic clock. In summary, our data suggest that misaligned meals impair the clock in the exocrine part of the pancreas by uncoupling insulin and corticosterone rhythms. These findings suggest a new mechanism by which adverse dietary habits, often associated with shift work in humans, may impair the clock in the exocrine pancreas and potentially contribute to exocrine pancreatic insufficiency.


Assuntos
Relógios Circadianos , Pâncreas Exócrino , Animais , Relógios Circadianos/fisiologia , Ritmo Circadiano/fisiologia , Corticosterona/metabolismo , Corticosterona/farmacologia , Glucocorticoides , Insulina/metabolismo , Camundongos , Pâncreas Exócrino/metabolismo , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...