Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 22 Suppl 2: A276-81, 2014 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-24922236

RESUMO

We demonstrate red-emitting silicon quantum dot (SiQD) phosphors as a low-cost and environment-friendly alternative to rare-earth element phosphors or CdSe quantum dots. After surface passivation, the SiQD-phosphors achieve high photoluminescence quantum yield = 51% with 365-nm excitation. The phosphors also have a peak photoluminescence wavelength at 630 nm and a full-width-at-half-maximum of 145 nm. The relatively broadband red emission is ideal for forming the basis of a warm white spectrum. With 365-nm or 405-nm LED pumping and the addition of green- and/or blue-emitting rare-earth element phosphors, warm white LEDs with color rendering index ~95 have been achieved.

2.
Opt Express ; 22(5): A276-81, 2014 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-24800283

RESUMO

We demonstrate red-emitting silicon quantum dot (SiQD) phosphors as a low-cost and environment-friendly alternative to rare-earth element phosphors or CdSe quantum dots. After surface passivation, the SiQD-phosphors achieve high photoluminescence quantum yield = 51% with 365-nm excitation. The phosphors also have a peak photoluminescence wavelength at 630 nm and a full-width-at-half-maximum of 145 nm. The relatively broadband red emission is ideal for forming the basis of a warm white spectrum. With 365-nm or 405-nm LED pumping and the addition of green- and/or blue-emitting rare-earth element phosphors, warm white LEDs with color rendering index ~95 have been achieved.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...