Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Arch Biochem Biophys ; 706: 108923, 2021 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-34029559

RESUMO

A highly organized and densely packed lattice of molecular machinery within the sarcomeres of muscle cells powers contraction. Although many of the proteins that drive contraction have been studied extensively, the mechanical impact of fluid shearing within the lattice of molecular machinery has received minimal attention. It was recently proposed that fluid flow augments substrate transport in the sarcomere, however, this analysis used analytical models of fluid flow in the molecular machinery that could not capture its full complexity. By building a finite element model of the sarcomere, we estimate the explicit flow field, and contrast it with analytical models. Our results demonstrate that viscous drag forces on sliding filaments are surprisingly small in contrast to the forces generated by single myosin molecular motors. This model also indicates that the energetic cost of fluid flow through viscous shearing with lattice proteins is likely minimal. The model also highlights a steep velocity gradient between sliding filaments and demonstrates that the maximal radial fluid velocity occurs near the tips of the filaments. To our knowledge, this is the first computational analysis of fluid flow within the highly structured sarcomere.


Assuntos
Análise de Elementos Finitos , Modelos Biológicos , Miosinas/fisiologia , Sarcômeros/fisiologia , Animais , Fenômenos Biomecânicos , Simulação por Computador , Humanos , Contração Muscular/fisiologia , Miosinas/ultraestrutura , Reologia , Sarcômeros/ultraestrutura , Termodinâmica , Viscosidade
2.
Lab Chip ; 16(15): 2840-50, 2016 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-27349748

RESUMO

Particles traveling at high velocities through microfluidic channels migrate from their starting streamlines due to inertial lift forces. Theories predict different scaling laws for these forces and there is little experimental evidence by which to validate theory. Here we experimentally measure the three dimensional positions and migration velocities of particles. Our experimental method relies on a combination of sub-pixel accurate particle tracking and velocimetric reconstruction of the depth dimension to track thousands of individual particles in three dimensions. We show that there is no simple scaling of inertial forces upon particle size, but that migration velocities agree well with numerical simulations and with a two-term asymptotic theory that contains no unmeasured parameters.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...