Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 108(3): 036401, 2012 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-22400763

RESUMO

In narrow d-band transition metals, electron temperature T(el) can impact the underlying electronic structure for temperatures near and above melt, strongly coupling the ion- and electron-thermal degrees of freedom and producing T(el)-dependent interatomic forces. Starting from the Mermin formulation of density functional theory, we have extended first-principles generalized pseudopotential theory to finite electron temperature and then developed efficient T(el)-dependent model generalized pseudopotential theory interatomic potentials for a Mo prototype. Unlike potentials based on the T(el)=0 electronic structure, the T(el)-dependent model generalized pseudopotential theory potentials yield a high-pressure Mo melt curve consistent with density functional theory quantum simulations, as well as with dynamic experiments, and also support a rich polymorphism in the high-(T,P) phase diagram.

2.
J Chem Phys ; 135(18): 184109, 2011 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-22088054

RESUMO

We perform release-node quantum Monte Carlo simulations on the first row diatomic molecules in order to assess how accurately their ground-state energies can be obtained. An analysis of the fermion-boson energy difference is shown to be strongly dependent on the nuclear charge, Z, which in turn determines the growth of variance of the release-node energy. It is possible to use maximum entropy analysis to extrapolate to ground-state energies only for the low Z elements. For the higher Z dimers beyond boron, the error growth is too large to allow accurate data for long enough imaginary times. Within the limit of our statistics we were able to estimate, in atomic units, the ground-state energy of Li(2) (-14.9947(1)), Be(2) (-29.3367(7)), and B(2)(-49.410(2)).

3.
Phys Rev Lett ; 104(19): 193001, 2010 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-20866961

RESUMO

The self-healing diffusion Monte Carlo algorithm (SHDMC) is shown to be an accurate and robust method for calculating the ground state of atoms and molecules. By direct comparison with accurate configuration interaction results for the oxygen atom, we show that SHDMC converges systematically towards the ground-state wave function. We present results for the challenging N2 molecule, where the binding energies obtained via both energy minimization and SHDMC are near chemical accuracy (1 kcal/mol). Moreover, we demonstrate that SHDMC is robust enough to find the nodal surface for systems at least as large as C20 starting from random coefficients. SHDMC is a linear-scaling method, in the degrees of freedom of the nodes, that systematically reduces the fermion sign problem.

4.
J Chem Phys ; 129(8): 084311, 2008 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-19044827

RESUMO

We investigate the accuracy of first-principles many-body theories at the nanoscale by comparing the low-energy excitations of the carbon fullerenes C(20), C(24), C(50), C(60), C(70), and C(80) with experiment. Properties are calculated via the GW-Bethe-Salpeter equation and diffusion quantum Monte Carlo methods. We critically compare these theories and assess their accuracy against available photoabsorption and photoelectron spectroscopy data. The first ionization potentials are consistently well reproduced and are similar for all the fullerenes and methods studied. The electron affinities and first triplet excitation energies show substantial method and geometry dependence. These results establish the validity of many-body theories as viable alternative to density-functional theory in describing electronic properties of confined carbon nanostructures. We find a correlation between energy gap and stability of fullerenes. We also find that the electron affinity of fullerenes is very high and size independent, which explains their tendency to form compounds with electron-donor cations.

5.
J Chem Phys ; 120(12): 5691-4, 2004 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-15267446

RESUMO

We have investigated the insulator to metal transition in fluid deuterium using first principles simulations. Both density functional and quantum Monte Carlo calculations indicate that the electronic energy gap of the liquid vanishes at about ninefold compression and 3000 K. At these conditions the computed conductivity values are characteristic of a poor metal. These findings are consistent with those of recent shock wave experiments but the computed conductivity is larger than the measured value. From our ab initio results we conclude that the transition is driven by molecular dissociation rather than disorder and that both temperature and pressure play a key role in determining structural changes in the fluid.

6.
Phys Rev Lett ; 91(7): 076403, 2003 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-12935038

RESUMO

Fixed-node diffusion quantum Monte Carlo (DMC) calculations of the ground and excited state energetics of the neutral vacancy defect in diamond are reported. The multiplet structure of the defect is modeled using guiding wave functions of the Slater-Jastrow type with symmetrized multideterminant Slater parts. For the ground state we obtain the 1E state in agreement with experiment. The calculated energy of the lowest dipole allowed transition is consistent with the experimentally observed GR1 band, which has long been identified with the neutral vacancy in diamond, although no previous first-principles ab initio calculation of this transition exists. The calculated multiplet splitting of over 2 eV indicates the importance of a proper treatment of electron exchange and correlation in this system. DMC calculations of the formation and migration energy of the vacancy defect are presented.

7.
Phys Rev Lett ; 89(19): 196803, 2002 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-12443140

RESUMO

Quantum Monte Carlo (QMC) calculations of the optical gaps of silicon quantum dots ranging in size from 0 to 1.5 nm are presented. These QMC results are used to examine the accuracy of density functional (DFT) and empirical pseudopotential based calculations. The GW approximation combined with a solution of the Bethe-Salpeter equation performs well but is limited by its scaling with system size. Optical gaps predicted by DFT vary by 1-2 eV depending on choice of functional. Corrections introduced by the time dependent formalism are found to be minimal in these systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...