Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Environ Toxicol Chem ; 41(5): 1131-1143, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34407230

RESUMO

Understanding the environmental fate, transport, and occurrence of pesticides and pharmaceuticals in aquatic environments is of utmost concern to regulators. Traditionally, monitoring of environmental contaminants in surface water has consisted of liquid chromatography-tandem mass spectrometry analyses for a set of targeted compounds in discrete samples. These targeted approaches are limited by the fact that they only provide information on compounds within a target list present at the time and location of sampling. To address these limitations, there has been considerable interest in suspect screening and nontargeted analysis (NTA), which allow for the detection of all ionizable compounds in the sample with the added benefit of data archiving for retrospective mining. Even though NTA can detect a large number of contaminants, discrete samples only provide a snapshot perspective of the chemical disposition of an aquatic environment at the time of sampling, potentially missing episodic events. We evaluated two types of passive chemical samplers for nontargeted analysis in mixed-use watersheds. Nontargeted data were processed using MS-DIAL to screen against our in-house library and public databases of more than 1300 compounds. The data showed that polar organic chemicals integrative samplers (POCIS) were able to capture the largest number of analytes with better reproducibility than organic compound-diffusive gradients in thin film (o-DGT), resulting from the greater amount of binding sorbent. We also showed that NTA combined with passive sampling gives a more representative picture of the contaminants present at a given site and enhances the ability to identify the nature of point and nonpoint pollution sources and ecotoxicological impacts. Environ Toxicol Chem 2022;41:1131-1143. © 2021 Her Majesty the Queen in Right of Canada Environmental Toxicology and Chemistry © 2021 SETAC. Reproduced with the permission of the Minister of Agriculture and Agri-Food Canada.


Assuntos
Monitoramento Ambiental , Poluentes Químicos da Água , Compostos Orgânicos/análise , Reprodutibilidade dos Testes , Estudos Retrospectivos , Poluentes Químicos da Água/análise
3.
Chem Res Toxicol ; 34(6): 1604-1611, 2021 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-33891387

RESUMO

Fumonisins are mycotoxins produced by a number of species of Fusarium and Aspergillus. They are polyketides that possess a linear polyol structure with two tricarballylic acid side chains and an amine moiety. Toxicity results from their inhibition of Ceramide Synthase (CerS), which perturbs sphingolipid concentrations. The tricarballylic side chains and amine group of fumonisins are key molecular features responsible for inhibiting CerS, however their individual contributions toward overall toxicity are not fully understood. We have recently reported novel, deaminated fumonisins produced by A. niger and have identified an enzyme (AnFAO) responsible for their synthesis. Here we performed a structure/function activity assay to investigate the individual contributions of the tricarballylic acid and amine toward overall fumonisin toxicity. Lemna minor was treated at 40 µM against FB1, hydrolyzed FB1 (hFB1), deaminated FB1 (FPy1), or hydrolyzed/deaminated (hFPy1). Four end points were monitored: plant dry weight, frond surface area, lipidomics, and metabolomics. Overall, hFB1 was less toxic than FB1 and FPy1 was less toxic than hFB1. hFPy1 which lacks both the amine group and tricarballylic side chains was also less toxic than FB1 and hFB1, however it was not significantly less toxic than FPy1. Lipidomic analysis showed that FB1 treatment significantly increased levels of phosphotidylcholines, ceramides, and pheophorbide A, while significantly decreasing the levels of diacylglycerides, sulfoquinovosyl diacylglycerides, and chlorophyll. Metabolomic profiling revealed a number of significantly increased compounds that were unique to FB1 treatment including phenylalanine, asymmetric dimethylarginine (ADMA), S-methylmethionine, saccharopine, and tyrosine. Conversely, citrulline, N-acetylornithine and ornithine were significantly elevated in the presence of hFB1 but not any of the other fumonisin analogues. These data provide evidence that although removal of the tricarballylic side chains significantly reduces toxicity of fumonisins, the amine functional group is a key contributor to fumonisin toxicity in L. minor and justify future toxicity studies in mammalian systems.


Assuntos
Araceae/efeitos dos fármacos , Fumonisinas/toxicidade , Animais , Fumonisinas/química , Fumonisinas/metabolismo , Estrutura Molecular , Relação Estrutura-Atividade
4.
J Chromatogr A ; 1639: 461901, 2021 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-33486444

RESUMO

A major challenge for LC-MS analysis is the ability to compare data between laboratories and across instrument platforms. Currently, mycotoxin determination relies on dereplication strategies based on physicochemical properties such as the m/z of the precursor and product ions. Unlike these intrinsic properties, retention time (tR) is an extrinsic property impacted by LC conditions, including mobile phases and column chemistry, making exchange of data between groups difficult. To address this, we are introducing the concept of incorporating an electrospray compatible, retention index (RI) system based on a series of N-alkylpyridinium-3-sulfonates (NAPS) into routine mycotoxin determination. These standards of differing alkyl chain length span RI units from 100 to 2000, are UV active and have fixed positive and negative charges for electrospray ionization in either mode. Using high resolution LC-MS/MS, the RIs of 96 mycotoxins and fungal secondary metabolites were normalized as a proof of concept with the NAPS RI system under multiple pH, column and gradient chromatographic conditions. This method was then applied to the analysis of a crude extract of Penicillium roqueforti, where we were able to decrease the number of false positives by implementing an RI filter as well as a secondary correction factor. Additionally, we developed software that allows users to convert published RIs to a predicted tR values. Integration of the NAPS RI system into routine LC-MS analysis will improve compound identifications and help facilitate ease of data sharing.


Assuntos
Cromatografia Líquida/métodos , Micotoxinas/análise , Polímeros/química , Compostos de Piridínio/química , Penicillium/metabolismo , Metabolismo Secundário , Espectrometria de Massas em Tandem
5.
J Vis Exp ; (147)2019 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-31205310

RESUMO

Natural products are often biosynthesized as mixtures of structurally similar compounds, rather than a single compound. Due to their common structural features, many compounds within the same class undergo similar MS/MS fragmentation and have several identical product ions and/or neutral losses. The purpose of diagnostic fragmentation filtering (DFF) is to efficiently detect all compounds of a given class in a complex extract by screening non-targeted LC-MS/MS datasets for MS/MS spectra that contain class specific product ions and/or neutral losses. This method is based on a DFF module implemented within the open-source MZmine platform that requires sample extracts be analyzed by data-dependent acquisition on a high-resolution mass spectrometer such as quadrupole Orbitrap or quadrupole time-of-flight mass analyzers. The main limitation of this approach is the analyst must first define which product ions and/or neutral losses are specific for the targeted class of natural products. DFF allows for the subsequent discovery of all related natural products within a complex sample, including new compounds. In this work, we demonstrate the effectiveness of DFF by screening extracts of Microcystis aeruginosa, a prominent harmful algal bloom causing cyanobacteria, for the production of microcystins.


Assuntos
Produtos Biológicos/análise , Cromatografia Líquida/métodos , Descoberta de Drogas , Microcistinas/análise , Espectrometria de Massas em Tandem/métodos , Cianobactérias/química , Íons , Microcistinas/química , Microcystis/química
6.
Rapid Commun Mass Spectrom ; 33(1): 133-139, 2019 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-30325552

RESUMO

RATIONALE: Microbial natural products are often biosynthesized as classes of structurally related compounds that have similar tandem mass spectrometry (MS/MS) fragmentation patterns. Mining MS/MS datasets for precursor ions that share diagnostic or common features enables entire chemical classes to be identified, including novel derivatives that have previously been unreported. Analytical data analysis tools that can facilitate a class-targeted approach to rapidly dereplicate known compounds and identify structural variants within complex matrices would be useful for the discovery of new natural products. METHODS: A diagnostic fragmentation filtering (DFF) module was developed for MZmine to enable the efficient screening of MS/MS datasets for class-specific product ions(s) and/or neutral loss(es). This approach was applied to series of the structurally related chaetoglobosin and cytochalasin classes of compounds. These were identified from the culture filtrates of three fungal genera: Chaetomium globosum, a putative new species of Penicillium (called here P. cf. discolor: closely related to P. discolor), and Xylaria sp. Extracts were subjected to LC/MS/MS analysis under positive electrospray ionization and operating in a data-dependent acquisition mode, performed using a Thermo Q-Exactive mass spectrometer. All MS/MS datasets were processed using the DFF module and screened for diagnostic product ions at m/z 130.0648 and 185.0704 for chaetoglobosins, and m/z 120.0808 and 146.0598 for cytochalasins. RESULTS: Extracts of C. globosum and P. cf. discolor strains revealed different mixtures of chaetoglobosins, whereas the Xylaria sp. produced only cytochalasins; none of the strains studied produced both classes of compounds. The dominant chaetoglobosins produced by both C. globosum and P. cf. discolor were chaetoglobosins A, C, and F. Tetrahydrochaetoglobosin A was identified from P. cf. discolor extracts and is reported here for the first time as a natural product. The major cytochalasins produced by the Xylaria sp. were cytochalasin D and epoxy cytochalasin D. A larger unknown "cytochalasin-like" molecule with the molecular formula C38 H47 NO10 was detected from Xylaria sp. culture filtrate extracts and is a current target for isolation and structural characterization. CONCLUSIONS: DFF is an effective LC/MS data analysis approach for rapidly identifying entire classes of compounds from complex mixtures. DFF has proved useful in the identification of new natural products and allowing for their partial characterization without the need for isolation.


Assuntos
Citocalasinas/química , Descoberta de Drogas/métodos , Alcaloides Indólicos/química , Software , Espectrometria de Massas em Tandem/métodos , Chaetomium/química , Chaetomium/metabolismo , Cromatografia Líquida , Citocalasinas/análise , Avaliação Pré-Clínica de Medicamentos/métodos , Fermentação , Alcaloides Indólicos/análise , Metabolômica/métodos , Penicillium/química , Penicillium/metabolismo , Xylariales/química , Xylariales/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...