Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Data ; 11(1): 273, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38448476

RESUMO

Coastal elevation data are essential for a wide variety of applications, such as coastal management, flood modelling, and adaptation planning. Low-lying coastal areas (found below 10 m +Mean Sea Level (MSL)) are at risk of future extreme water levels, subsidence and changing extreme weather patterns. However, current freely available elevation datasets are not sufficiently accurate to model these risks. We present DeltaDTM, a global coastal Digital Terrain Model (DTM) available in the public domain, with a horizontal spatial resolution of 1 arcsecond (∼30 m) and a vertical mean absolute error (MAE) of 0.45 m overall. DeltaDTM corrects CopernicusDEM with spaceborne lidar from the ICESat-2 and GEDI missions. Specifically, we correct the elevation bias in CopernicusDEM, apply filters to remove non-terrain cells, and fill the gaps using interpolation. Notably, our classification approach produces more accurate results than regression methods recently used by others to correct DEMs, that achieve an overall MAE of 0.72 m at best. We conclude that DeltaDTM will be a valuable resource for coastal flood impact modelling and other applications.

2.
Carbon Balance Manag ; 15(1): 4, 2020 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-32206931

RESUMO

BACKGROUND: Reduction of carbon emissions from peatlands is recognized as an important factor in global climate change mitigation. Within the SE Asia region, areas of deeper peat present the greatest carbon stocks, and therefore the greatest potential for future carbon emissions from degradation and fire. They also support most of the remaining lowland swamp forest and its associated biodiversity. Accurate maps of deep peat are central to providing correct estimates of peat carbon stocks and to facilitating appropriate management interventions. We present a rapid and cost-effective approach to peat thickness mapping in raised peat bogs that applies a model of peat bottom elevation based on field measurements subtracted from a surface elevation model created from airborne LiDAR data. RESULTS: In two raised peat bog test areas in Indonesia, we find that field peat thickness measurements correlate well with surface elevation derived from airborne LiDAR based DTMs (R2 0.83-0.88), confirming that the peat bottom is often relatively flat. On this basis, we created a map of extent and depth of deep peat (> 3 m) from a new DTM that covers two-thirds of Sumatran peatlands, applying a flat peat bottom of 0.61 m +MSL determined from the average of 2446 field measurements. A deep peat area coverage of 2.6 Mha or 60.1% of the total peat area in eastern Sumatra is mapped, suggesting that deep peat in this region is more common than shallow peat and its extent was underestimated in earlier maps. The associated deep peat carbon stock range is 9.0-11.5 Pg C in eastern Sumatra alone. CONCLUSION: We discuss how the deep peat map may be used to identify priority areas for peat and forest conservation and thereby help prevent major potential future carbon emissions and support the safeguarding of the remaining forest and biodiversity. We propose rapid application of this method to other coastal raised bog peatland areas in SE Asia in support of improved peatland zoning and management. We demonstrate that the upcoming global ICESat-2 and GEDI satellite LiDAR coverage will likely result in a global DTM that, within a few years, will be sufficiently accurate for this application.

3.
Glob Chang Biol ; 22(4): 1469-80, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26661597

RESUMO

Tropical peatland fires play a significant role in the context of global warming through emissions of substantial amounts of greenhouse gases. However, the state of knowledge on carbon loss from these fires is still poorly developed with few studies reporting the associated mass of peat consumed. Furthermore, spatial and temporal variations in burn depth have not been previously quantified. This study presents the first spatially explicit investigation of fire-driven tropical peat loss and its variability. An extensive airborne Light Detection and Ranging data set was used to develop a prefire peat surface modelling methodology, enabling the spatially differentiated quantification of burned area depth over the entire burned area. We observe a strong interdependence between burned area depth, fire frequency and distance to drainage canals. For the first time, we show that relative burned area depth decreases over the first four fire events and is constant thereafter. Based on our results, we revise existing peat and carbon loss estimates for recurrent fires in drained tropical peatlands. We suggest values for the dry mass of peat fuel consumed that are 206 t ha(-1) for initial fires, reducing to 115 t ha(-1) for second, 69 t ha(-1) for third and 23 t ha(-1) for successive fires, which are 58-7% of the current IPCC Tier 1 default value for all fires. In our study area, this results in carbon losses of 114, 64, 38 and 13 t C ha(-1) for first to fourth fires, respectively. Furthermore, we show that with increasing proximity to drainage canals both burned area depth and the probability of recurrent fires increase and present equations explaining burned area depth as a function of distance to drainage canal. This improved knowledge enables a more accurate approach to emissions accounting and will support IPCC Tier 2 reporting of fire emissions.


Assuntos
Carbono , Incêndios , Modelos Teóricos , Solo , Indonésia , Clima Tropical
4.
Nature ; 493(7434): 660-3, 2013 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-23364745

RESUMO

Tropical peatlands contain one of the largest pools of terrestrial organic carbon, amounting to about 89,000 teragrams (1 Tg is a billion kilograms). Approximately 65 per cent of this carbon store is in Indonesia, where extensive anthropogenic degradation in the form of deforestation, drainage and fire are converting it into a globally significant source of atmospheric carbon dioxide. Here we quantify the annual export of fluvial organic carbon from both intact peat swamp forest and peat swamp forest subject to past anthropogenic disturbance. We find that the total fluvial organic carbon flux from disturbed peat swamp forest is about 50 per cent larger than that from intact peat swamp forest. By carbon-14 dating of dissolved organic carbon (which makes up over 91 per cent of total organic carbon), we find that leaching of dissolved organic carbon from intact peat swamp forest is derived mainly from recent primary production (plant growth). In contrast, dissolved organic carbon from disturbed peat swamp forest consists mostly of much older (centuries to millennia) carbon from deep within the peat column. When we include the fluvial carbon loss term, which is often ignored, in the peatland carbon budget, we find that it increases the estimate of total carbon lost from the disturbed peatlands in our study by 22 per cent. We further estimate that since 1990 peatland disturbance has resulted in a 32 per cent increase in fluvial organic carbon flux from southeast Asia--an increase that is more than half of the entire annual fluvial organic carbon flux from all European peatlands. Our findings emphasize the need to quantify fluvial carbon losses in order to improve estimates of the impact of deforestation and drainage on tropical peatland carbon balances.


Assuntos
Ciclo do Carbono , Conservação dos Recursos Naturais , Solo/química , Árvores/metabolismo , Radioisótopos de Carbono/análise , Indonésia , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...