Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Gene Med ; 24(5): e3415, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35132731

RESUMO

Gene therapy has emerged as a promising tool for treating different intractable diseases, particularly cancer or even viral diseases such as COVID-19 (coronavirus disease 2019). In this context, various non-viral gene carriers are being explored to transfer DNA or RNA sequences into target cells. Here, we review the applications of the naturally occurring amino acid histidine in the delivery of nucleic acids into cells. The biocompatibility of histidine-enhanced gene delivery systems has encouraged their wider use in gene therapy. Histidine-based gene carriers can involve the modification of peptides, dendrimers, lipids or nanocomposites. Several linear polymers, such as polyethylenimine, poly-l-lysine (synthetic) or dextran and chitosan (natural), have been conjugated with histidine residues to form complexes with nucleic acids for intracellular delivery. The challenges, opportunities and future research trends of histidine-based gene deliveries are investigated.


Assuntos
COVID-19 , Ácidos Nucleicos , COVID-19/terapia , Técnicas de Transferência de Genes , Histidina/genética , Humanos , Transfecção
2.
Mol Divers ; 25(2): 827-838, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-32193758

RESUMO

The advent of computational methods for efficient prediction of the druglikeness of small molecules and their ever-burgeoning applications in the fields of medicinal chemistry and drug industries have been a profound scientific development, since only a few amounts of the small molecule libraries were identified as approvable drugs. In this study, a deep belief network was utilized to construct a druglikeness classification model. For this purpose, small molecules and approved drugs from the ZINC database were selected for the unsupervised pre-training step and supervised training step. Various binary fingerprints such as Macc 166 bit, PubChem 881 bit, and Morgan 2048 bit as data features were investigated. The report revealed that using an unsupervised pre-training phase can lead to a good performance model and generalizability capability. Accuracy, precision, and recall of the model for Macc features were 97%, 96%, and 99%, respectively. For more consideration about the generalizability of the model, the external data by expression and investigational drugs in drug banks as drug data and randomly selected data from the ZINC database as non-drug were created. The results confirmed the good performance and generalizability capability of the model. Also, the outcomes depicted that a large proportion of misclassified non-drug small molecules ascertain the bioavailability conditions and could be investigated as a drug in the future. Furthermore, our model attempted to tap potential opportunities as a drug filter in drug discovery.


Assuntos
Aprendizado Profundo , Descoberta de Drogas , Bases de Dados de Produtos Farmacêuticos , Preparações Farmacêuticas/classificação
3.
Mol Divers ; 25(3): 1717-1730, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32997257

RESUMO

Recently, various computational methods have been proposed to find new therapeutic applications of the existing drugs. The Multimodal Restricted Boltzmann Machine approach (MM-RBM), which has the capability to connect the information about the multiple modalities, can be applied to the problem of drug repurposing. The present study utilized MM-RBM to combine two types of data, including the chemical structures data of small molecules and differentially expressed genes as well as small molecules perturbations. In the proposed method, two separate RBMs were applied to find out the features and the specific probability distribution of each datum (modality). Besides, RBM was used to integrate the discovered features, resulting in the identification of the probability distribution of the combined data. The results demonstrated the significance of the clusters acquired by our model. These clusters were used to discover the medicines which were remarkably similar to the proposed medications to treat COVID-19. Moreover, the chemical structures of some small molecules as well as dysregulated genes' effect led us to suggest using these molecules to treat COVID-19. The results also showed that the proposed method might prove useful in detecting the highly promising remedies for COVID-19 with minimum side effects. All the source codes are accessible using https://github.com/LBBSoft/Multimodal-Drug-Repurposing.git.


Assuntos
Tratamento Farmacológico da COVID-19 , Aprendizado Profundo , Reposicionamento de Medicamentos/métodos , Probabilidade , Bibliotecas de Moléculas Pequenas/farmacologia , Bibliotecas de Moléculas Pequenas/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...