Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Transl Med ; 11(480)2019 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-30787166

RESUMO

Glucose is the ultimate substrate for most brain activities that use carbon, including synthesis of the neurotransmitters glutamate and γ-aminobutyric acid via mitochondrial tricarboxylic acid (TCA) cycle. Brain metabolism and neuronal excitability are thus interdependent. However, the principles that govern their relationship are not always intuitive because heritable defects of brain glucose metabolism are associated with the paradoxical coexistence, in the same individual, of episodic neuronal hyperexcitation (seizures) with reduced basal cerebral electrical activity. One such prototypic disorder is pyruvate dehydrogenase (PDH) deficiency (PDHD). PDH is central to metabolism because it steers most of the glucose-derived flux into the TCA cycle. To better understand the pathophysiology of PDHD, we generated mice with brain-specific reduced PDH activity that paralleled salient human disease features, including cerebral hypotrophy, decreased amplitude electroencephalogram (EEG), and epilepsy. The mice exhibited reductions in cerebral TCA cycle flux, glutamate content, spontaneous, and electrically evoked in vivo cortical field potentials and gamma EEG oscillation amplitude. Episodic decreases in gamma oscillations preceded most epileptiform discharges, facilitating their prediction. Fast-spiking neuron excitability was decreased in brain slices, contributing to in vivo action potential burst prolongation after whisker pad stimulation. These features were partially reversed after systemic administration of acetate, which augmented cerebral TCA cycle flux, glutamate-dependent synaptic transmission, inhibition and gamma oscillations, and reduced epileptiform discharge duration. Thus, our results suggest that dysfunctional excitability in PDHD is consequent to reduced oxidative flux, which leads to decreased neuronal activation and impaired inhibition, and can be mitigated by an alternative metabolic substrate.


Assuntos
Encéfalo/metabolismo , Neurônios/fisiologia , Doença da Deficiência do Complexo de Piruvato Desidrogenase/metabolismo , Doença da Deficiência do Complexo de Piruvato Desidrogenase/fisiopatologia , Acetatos/metabolismo , Algoritmos , Animais , Isótopos de Carbono , Córtex Cerebral/metabolismo , Modelos Animais de Doenças , Eletroencefalografia , Potenciais Evocados , Ritmo Gama , Glucose/metabolismo , Ácido Glutâmico/metabolismo , Humanos , Aprendizado de Máquina , Camundongos , Inibição Neural , Convulsões/metabolismo , Convulsões/fisiopatologia , Vibrissas
2.
J Neurochem ; 132(1): 99-109, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25231025

RESUMO

The (13) C-labeling patterns in glutamate and glutamine from brain tissue are quite different after infusion of a mixture of (13) C-enriched glucose and acetate. Two processes contribute to this observation, oxidation of acetate by astrocytes but not neurons, and preferential incorporation of α-ketoglutarate into glutamate in neurons, and incorporation of α-ketoglutarate into glutamine in astrocytes. The acetate:glucose ratio, introduced previously for analysis of a single (13) C NMR spectrum, provides a useful index of acetate and glucose oxidation in the brain tissue. However, quantitation of relative substrate oxidation at the cell compartment level has not been reported. A simple mathematical method is presented to quantify the ratio of acetate-to-glucose oxidation in astrocytes, based on the standard assumption that neurons do not oxidize acetate. Mice were infused with [1,2-(13) C]acetate and [1,6-(13) C]glucose, and proton decoupled (13) C NMR spectra of cortex extracts were acquired. A fit of those spectra to the model indicated that (13) C-labeled acetate and glucose contributed approximately equally to acetyl-CoA (0.96) in astrocytes. As this method relies on a single (13) C NMR spectrum, it can be readily applied to multiple physiologic and pathologic conditions. Differences in (13) C labeling of brain glutamate and glutamine have been attributed to metabolic compartmentation. The acetate:glucose ratio, introduced for description of a (13) C NMR (nuclear magnetic resonance) spectrum, is an index of glucose and acetate oxidation in brain tissue. A simple mathematical method is presented to quantify the ratio of acetate-to-glucose oxidation in astrocytes from a single NMR spectrum. As kinetic analysis is not required, the method is readily applicable to analysis of tissue extracts. α-KG = alpha-ketoglutarate; CAC = citric acid cycle; GLN = glutamine; GLU = glutamate.


Assuntos
Acetatos/metabolismo , Astrócitos/metabolismo , Córtex Cerebral/metabolismo , Glucose/metabolismo , Acetilcoenzima A/metabolismo , Animais , Astrócitos/química , Córtex Cerebral/química , Córtex Cerebral/citologia , Feminino , Ácido Glutâmico/metabolismo , Glutamina/metabolismo , Ácidos Cetoglutáricos/metabolismo , Espectroscopia de Ressonância Magnética , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/química , Neurônios/metabolismo , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...