Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
J Econ Entomol ; 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38877967

RESUMO

Highbush blueberry pollination depends on managed honey bees (Apis mellifera) L. for adequate fruit sets; however, beekeepers have raised concerns about the poor health of colonies after pollinating this crop. Postulated causes include agrochemical exposure, nutritional deficits, and interactions with parasites and pathogens, particularly Melisococcus plutonius [(ex. White) Bailey and Collins, Lactobacillales: Enterococcaceae], the causal agent of European foulbrood disease, but other pathogens could be involved. To broadly investigate common honey bee pathogens in relation to blueberry pollination, we sampled adult honey bees from colonies at time points corresponding to before (t1), during (t2), at the end (t3), and after (t4) highbush blueberry pollination in British Columbia, Canada, across 2 years (2020 and 2021). Nine viruses, as well as M. plutonius, Vairimorpha ceranae, and V. apis [Tokarev et al., Microsporidia: Nosematidae; formerly Nosema ceranae (Fries et al.) and N. apis (Zander)], were detected by PCR and compared among colonies located near and far from blueberry fields. We found a significant interactive effect of time and blueberry proximity on the multivariate pathogen community, mainly due to differences at t4 (corresponding to ~6 wk after the beginning of the pollination period). Post hoc comparisons of pathogens in near and far groups at t4 showed that detections of sacbrood virus (SBV), which was significantly higher in the near group, not M. plutonius, was the primary driver. Further research is needed to determine if the association of SBV with highbush blueberry pollination is contributing to the health decline that beekeepers observe after pollinating this crop.

2.
Curr Biol ; 34(9): 1893-1903.e3, 2024 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-38636513

RESUMO

Honey bees play a major role in crop pollination but have experienced declining health throughout most of the globe. Despite decades of research on key honey bee stressors (e.g., parasitic Varroa destructor mites and viruses), researchers cannot fully explain or predict colony mortality, potentially because it is caused by exposure to multiple interacting stressors in the field. Understanding which honey bee stressors co-occur and have the potential to interact is therefore of profound importance. Here, we used the emerging field of systems theory to characterize the stressor networks found in honey bee colonies after they were placed in fields containing economically valuable crops across Canada. Honey bee stressor networks were often highly complex, with hundreds of potential interactions between stressors. Their placement in crops for the pollination season generally exposed colonies to more complex stressor networks, with an average of 23 stressors and 307 interactions. We discovered that the most influential stressors in a network-those that substantively impacted network architecture-are not currently addressed by beekeepers. Finally, the stressor networks showed substantial divergence among crop systems from different regions, which is consistent with the knowledge that some crops (e.g., highbush blueberry) are traditionally riskier to honey bees than others. Our approach sheds light on the stressor networks that honey bees encounter in the field and underscores the importance of considering interactions among stressors. Clearly, addressing and managing these issues will require solutions that are tailored to specific crops and regions and their associated stressor networks.


Assuntos
Produtos Agrícolas , Polinização , Abelhas/fisiologia , Abelhas/parasitologia , Animais , Varroidae/fisiologia , Canadá , Estresse Fisiológico , Criação de Abelhas/métodos
3.
PLoS One ; 19(3): e0288953, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38489327

RESUMO

In this study, we intensively measured the longitudinal productivity and survival of 362 commercially managed honey bee colonies in Canada, over a two-year period. A full factorial experimental design was used, whereby two treatments were repeated across apiaries situated in three distinct geographic regions: Northern Alberta, Southern Alberta and Prince Edward Island, each having unique bee management strategies. In the protein supplemented treatment, colonies were continuously provided a commercial protein supplement containing 25% w/w pollen, in addition to any feed normally provided by beekeepers in that region. In the fumagillin treatment, colonies were treated with the label dose of Fumagilin-B® each year during the fall. Neither treatment provided consistent benefits across all sites and dates. Fumagillin was associated with a large increase in honey production only at the Northern Alberta site, while protein supplementation produced an early season increase in brood production only at the Southern Alberta site. The protein supplement provided no long-lasting benefit at any site and was also associated with an increased risk of death and decreased colony size later in the study. Differences in colony survival and productivity among regions, and among colonies within beekeeping operations, were far larger than the effects of either treatment, suggesting that returns from extra feed supplements and fumagillin were highly contextually dependent. We conclude that use of fumagillin is safe and sometimes beneficial, but that beekeepers should only consider excess protein supplementation when natural forage is limiting.


Assuntos
Cicloexanos , Ácidos Graxos Insaturados , Mel , Abelhas , Animais , Estações do Ano , Suplementos Nutricionais , Alberta , Sesquiterpenos
4.
Plant Methods ; 19(1): 120, 2023 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-37925401

RESUMO

BACKGROUND: The mutualistic interaction between entomophilous plants and pollinators is fundamental to the structure of most terrestrial ecosystems. The sensitive nature of this relationship has been disrupted by anthropogenic modifications to natural landscapes, warranting development of new methods for exploring this trophic interaction. Characterizing the composition of pollen collected by pollinators, e.g. Apis mellifera, is a common means of exploring this relationship, but traditional methods of microscopic pollen assessment are laborious and limited in their scope. The development of pollen metabarcoding as a method of rapidly characterizing the abundance and diversity of pollen within mixed samples presents a new frontier for this type of work, but metabarcoding may have limitations, and validation is warranted before any suite of primers can be confidently used in a research program. We set out to evaluate the utility of an integrative approach, using a set of established primers (ITS2 and rbcL) versus melissopalynological analysis for characterizing 27 mixed-pollen samples from agricultural sites across Canada. RESULTS: Both individual markers performed well relative to melissopalynology at the family level with decreases in the strength of correlation and linear model fits at the genus level. Integrating data from both markers together via a multi-locus approach provided the best rank-based correlation between metagenetic and melissopalynological data at both the genus (ρ = 0.659; p < 0.001) and family level (ρ = 0.830; p < 0.001). Species accumulation curves indicated that, after controlling for sampling effort, melissopalynological characterization provides similar or higher species richness estimates than either marker. The higher number of plant species discovered via the metabarcoding approach simply reflects the vastly greater sampling effort in comparison to melissopalynology. CONCLUSIONS: Pollen metabarcoding performed well at characterizing the composition of mixed pollen samples relative to a traditional melissopalynological approach. Limitations to the quantitative application of this method can be addressed by adopting a multi-locus approach that integrates information from multiple markers.

5.
J Insect Sci ; 23(5)2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37815893

RESUMO

Many Canadian beekeepers replace a subset of their honey bee queens annually. However, introducing a new queen to a honey bee colony is a management practice with a high degree of uncertainty. Despite the consensus that it is most effective to introduce queens to queenless colonies, some commercial beekeepers claim success with introducing queen cells into the honey super of queenright colonies. We tested the success rate of this practice by introducing queen cells to 100 queenright colonies in southern Alberta during a honey flow. The genotypes of the resultant offspring drones were determined using the microsatellite marker A76 to identify their laying queen mothers. Our results show that new queens successfully supersede original queens in 6% of queenright colonies, suggesting that the practice does not result in the new queen taking over leadership in most colonies. Additionally, supersedure by daughter queens is more common (13%) than new queen supersedure when introducing queen cells to queenright colonies during a honey flow. However, there could be a benefit to the practice of requeening queenright colonies with queen cells in honey supers if the colonies that accepted a new queen (whether a daughter of or unrelated to the old queen) were colonies with a failing queen.


Assuntos
Mel , Abelhas , Animais , Canadá , Repetições de Microssatélites , Genótipo
6.
Biotechnol Adv ; 69: 108245, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37652144

RESUMO

Carbohydrates are chemically and structurally diverse biomolecules, serving numerous and varied roles in agricultural ecosystems. Crops and horticulture products are inherent sources of carbohydrates that are consumed by humans and non-human animals alike; however carbohydrates are also present in other agricultural materials, such as soil and compost, human and animal tissues, milk and dairy products, and honey. The biosynthesis, modification, and flow of carbohydrates within and between agricultural ecosystems is intimately related with microbial communities that colonize and thrive within these environments. Recent advances in -omics techniques have ushered in a new era for microbial ecology by illuminating the functional potential for carbohydrate metabolism encoded within microbial genomes, while agricultural glycomics is providing fresh perspective on carbohydrate-microbe interactions and how they influence the flow of functionalized carbon. Indeed, carbohydrates and carbohydrate-active enzymes are interventions with unrealized potential for improving carbon sequestration, soil fertility and stability, developing alternatives to antimicrobials, and circular production systems. In this manner, glycomics represents a new frontier for carbohydrate-based biotechnological solutions for agricultural systems facing escalating challenges, such as the changing climate.


Assuntos
Carboidratos , Microbiota , Animais , Carboidratos/química , Metabolismo dos Carboidratos , Agricultura , Solo/química
7.
J Econ Entomol ; 116(3): 686-696, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37040616

RESUMO

Canadian beekeepers faced widespread levels of high honey bee colony mortality over the winter of 2021/2022, with an average winter loss of 45%. To understand the economic impact of winter colony mortality in Canada and the beekeeping management strategies used to mitigate these losses, we develop a profit model of commercial beekeeping operations in Alberta, Canada. Our model shows that for operations engaging in commercial pollination as well as honey production (compared to honey production alone), per colony profit is higher and operations are better able to withstand fluctuations in exogenous variables such as prices and environmental factors affecting productivity including winter mortality rates. The results also suggest that beekeeping operations that replace winter colony losses with splits instead of package bees accrue higher per colony profit than those importing packages to replace losses. Further, operations that produce their own queens to use in their replacement splits, accrue even higher profit. Our results demonstrate that the profitability of beekeeping operations is dependent on several factors including winter mortality rates, colony replacement strategies, and the diversification of revenue sources. Beekeepers who are not as susceptible to price and risk fluctuations in international markets and imported bee risks accrue more consistently positive profits.


Assuntos
Mel , Himenópteros , Abelhas , Animais , Alberta , Estações do Ano , Criação de Abelhas
8.
J Econ Entomol ; 116(3): 651-661, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37119539

RESUMO

Fumagilin-B is used to treat nosema infection in honey bee colonies; however, it is unclear whether treatment consistently reduces Vairimorpha ceranae (Fries et al.) abundance and improves colony strength and survival in the Canadian Prairies. This study assessed spring and fall fumagillin treatments on nosema abundance, colony strength, and mortality in 2 different beekeeping regions within Alberta, using both indoor and outdoor wintering management at each site. We compared 4 fumagillin treatments: Spring-only, Fall-only, Spring-and-Fall, and Control (no treatment). The spring treatment dose was ~68 mg/colony, whereas the fall treatment dose was 120 or 48 mg/colony, depending on the year. We found that the colonies were infected predominately with V. ceranae, with V. apis (Zander) present only in mixed infections in a subset of colonies. Although treatment in either the spring or fall did reduce nosema abundance in the short term, it did not eliminate the infection, making continued monitoring necessary. Colony strength was improved by spring treatment in some locations but not consistently, possibly due to the treatment timing or low dose. The combined spring and fall treatment increased colony survival over winter in one of 2 yr. Wintering method did not interact with treatment to affect nosema abundance in the spring. There does not appear to be a significant residual benefit of fall treatment as it did not reduce spring nosema abundance or increase colony population. Therefore, spring treatment should be applied to reduce spring V. ceranae abundance rather than relying on residual efficacy from previous fall treatments.


Assuntos
Himenópteros , Nosema , Abelhas , Animais , Canadá , Pradaria
9.
Front Public Health ; 10: 953198, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36211696

RESUMO

Objectives: To explore the effectiveness of a COVID-19 specific social vulnerability index, we examined the relative importance of four COVID-19 specific themes and three general themes of the COVID-19 Community Vulnerability Index (CCVI) in explaining COVID-19 mortality rates in Cook County, Illinois. Methods: We counted COVID-19 death records from the Cook County Medical Examiner's Office, geocoded incident addresses by census tracts, and appended census tracts' CCVI scores. Negative binomial regression and Random Forest were used to examine the relative importance of CCVI themes in explaining COVID-19 mortality rates. Results: COVID-19 specific Themes 6 (High risk environments) and 4 (Epidemiological factors) were the most important in explaining COVID-19 mortality (incidence rate ratio (IRR) = 6.80 and 6.44, respectively), followed by a general Theme 2 (Minority status & language, IRR = 3.26). Conclusion: The addition of disaster-specific indicators may improve the accuracy of social vulnerability indices. However, variance for Theme 6 was entirely from the long-term care resident indicator, as the other two indicators were constant at the census tract level. Thus, CCVI should be further refined to improve its effectiveness in identifying vulnerable communities. Also, building a more robust local data infrastructure is critical to understanding the vulnerabilities of local places.


Assuntos
COVID-19 , COVID-19/epidemiologia , Humanos , Incidência , Grupos Minoritários
10.
Oncoimmunology ; 11(1): 2010905, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35481284

RESUMO

Current immunotherapies for lung cancer are only effective in a subset of patients. Identifying tumor-derived factors that facilitate immunosuppression offers the opportunity to develop novel strategies to supplement and improve current therapeutics. We sought to determine whether expression of driver oncogenes in lung cancer cells affects cytokine secretion, alters the local immune environment, and influences lung tumor progression. We demonstrate that oncogenic EGFR and KRAS mutations, which are early events in lung tumourigenesis, can drive cytokine and chemokine production by cancer cells. One of the most prominent changes was in CCL5, which was rapidly induced by KRASG12V or EGFRL858R expression, through MAPK activation. Immunocompetent mice implanted with syngeneic KRAS-mutant lung cancer cells deficient in CCL5 have decreased regulatory T cells (Tregs), evidence of T cell exhaustion, and reduced lung tumor burden, indicating tumor-cell CCL5 production contributes to an immune suppressive environment in the lungs. Furthermore, high CCL5 expression correlates with poor prognosis, immunosuppressive regulatory T cells, and alteration to CD8 effector function in lung adenocarcinoma patients. Our data support targeting CCL5 or CCL5 receptors on immune suppressive cells to prevent formation of an immune suppressive tumor microenvironment that promotes lung cancer progression and immunotherapy insensitivity.


Assuntos
Neoplasias Pulmonares , Proteínas Proto-Oncogênicas p21(ras) , Animais , Quimiocina CCL5/genética , Quimiocina CCL5/metabolismo , Citocinas/metabolismo , Receptores ErbB/metabolismo , Humanos , Pulmão/metabolismo , Pulmão/patologia , Neoplasias Pulmonares/genética , Camundongos , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Microambiente Tumoral
11.
J Econ Entomol ; 115(2): 417-429, 2022 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-35181788

RESUMO

Adequate nutrition is required to support productive honey bee colonies, therefore beekeepers supplement colonies with additional protein at targeted time points. We tested the effects of commercially available protein feeds in spring, in advance of colonies being used for hybrid canola pollination. The feed treatments across the three-year study included the following patty types: Global 15% pollen, Global 0% pollen, Bee Pollen-Ate, FeedBee, and Healthy Bees, as well as an unsupplemented control in year two of the study only. The amount of feed consumed varied among colonies, treatments, date, and year. Similarly, there were also differences in feed efficiency (bees reared per gram of feed consumed), likely due to the relative availability of external forage sources to supplement the feed provided. Unsupplemented colonies were able to rear less brood, and subsequently had fewer adult bees than supplemented colonies, in an apiary where pollen was not abundant. Differences in consumption among treatments often failed to translate in to differences in amount of brood reared or subsequent adult population. All the protein feed treatments contained all ten amino acids essential to honey bees, however lysine and arginine were below the optimal proportion required for growth in all patties except the FeedBee patty. The amount of protein and amount and types of sugars and fats in the products also varied among product type and batch. The results of this study demonstrate a benefit to supplementary spring protein feeding to increase honey bee colony populations in advance of a summer pollination market.


Assuntos
Brassica napus , Himenópteros , Animais , Abelhas , Pólen , Polinização , Estações do Ano
12.
PLoS One ; 17(1): e0263273, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35100308

RESUMO

Many pathogens and parasites have evolved to overwhelm and suppress their host's immune system. Nevertheless, the interactive effects of these agents on colony productivity and wintering success have been relatively unexplored, particularly in large-scale phenomic studies. As a defense mechanism, honey bees have evolved remarkable social behaviors to defend against pathogen and parasite challenges, which reduce the impact of disease and improve colony health. To investigate the complex role of pathogens, parasites and social immunity behaviors in relation to colony productivity and outcomes, we extensively studied colonies at several locations across Canada for two years. In 2016 and 2017, colonies founded with 1-year-old queens of diverse genetic origin were evaluated, which represented a generalized subset of the Canadian bee population. During each experimental year (May through April), we collected phenotypic data and sampled colonies for pathogen analysis in a standardized manner. Measures included: colony size and productivity (colony weight, cluster size, honey production, and sealed brood population), social immunity traits (hygienic behavior, instantaneous mite population growth rate, and grooming behavior), as well as quantification of gut parasites (Nosema spp., and Lotmaria passim), viruses (DWV-A, DWV-B, BQCV and SBV) and external parasites (Varroa destructor). Our goal was to examine: 1) correlations between pathogens and colony phenotypes; 2) the dynamics of pathogens and parasites on colony phenotypes and productivity traits; and 3) the effects of social immunity behaviors on colony pathogen load. Our results show that colonies expressing high levels of some social immunity behaviors were associated with low levels of pathogens/parasites, including viruses, Nosema spp., and V. destructor. In addition, we determined that elevated viral and Nosema spp. levels were associated with low levels of colony productivity, and that five out of six pathogenic factors measured were negatively associated with colony size and weight in both fall and spring periods. Finally, this study also provides information about the incidence and abundance of pathogens, colony phenotypes, and further disentangles their inter-correlation, so as to better understand drivers of honey bee colony health and productivity.


Assuntos
Abelhas/parasitologia , Abelhas/virologia , Comportamento Animal/fisiologia , Saúde , Interações Hospedeiro-Patógeno , Fenômica , Animais , Canadá , Geografia , Mel , Modelos Lineares , Parasitos , Fenótipo , Tamanho da Amostra , Estações do Ano , Comportamento Social , Varroidae
13.
PLoS One ; 16(10): e0258801, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34695141

RESUMO

The epidemiology of Nosema spp. in honey bees, Apis mellifera, may be affected by winter conditions as cold temperatures and differing wintering methods (indoor and outdoor) provide varying levels of temperature stress and defecation flight opportunities. Across the Canadian Prairies, including Alberta, the length and severity of winter vary among geographic locations. This study investigates the seasonal pattern of Nosema abundance in two Alberta locations using indoor and outdoor wintering methods and its impact on bee population, survival, and commercial viability. This study found that N. ceranae had a distinct seasonal pattern in Alberta, with high spore abundance in spring, declining to low levels in the summer and fall. The results showed that fall Nosema monitoring might not be the best indicator of treatment needs or future colony health outcomes. There was no clear pattern for differences in N. ceranae abundance by location or wintering method. However, wintering method affected survival with colonies wintered indoors having lower mortality and more rapid spring population build-up than outdoor-wintered colonies. The results suggest that the existing Nosema threshold should be reinvestigated with wintering method in mind to provide more favorable outcomes for beekeepers. Average Nosema abundance in the spring was a significant predictor of end-of-study winter colony mortality, highlighting the importance of spring Nosema monitoring and treatments.


Assuntos
Criação de Abelhas/métodos , Abelhas/crescimento & desenvolvimento , Micoses/epidemiologia , Nosema/patogenicidade , Estações do Ano , Temperatura , Alberta/epidemiologia , Animais , Abelhas/microbiologia , Micoses/microbiologia , Nosema/isolamento & purificação
14.
J Econ Entomol ; 114(6): 2245-2254, 2021 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-34545929

RESUMO

To gauge the impact of COVID-19 on the Canadian beekeeping sector, we conducted a survey of over 200 beekeepers in the fall of 2020. Our survey results show Canadian beekeepers faced two major challenges: 1) disrupted importation of honey bees (Hymenoptera: Apidae) (queen and bulk bees) that maintain populations; and 2) disrupted arrival of temporary foreign workers (TFWs). Disruptions in the arrival of bees and labor resulted in fewer colonies and less colony management, culminating in higher costs and lower productivity. Using the survey data, we develop a profitability analysis to estimate the impact of these disruptions on colony profit. Our results suggest that a disruption in either foreign worker or bee arrival allows beekeepers to compensate and while colony profits are lower, they remain positive. When both honey bee and foreign workers arrivals are disrupted for a beekeeper, even when the beekeeper experiences less significant colony health and cost impacts, a colony with a single pollination contract is no longer profitable, and a colony with two pollination contracts has significantly reduced profitability. As COVID-19 disruptions from 2020 and into 2021 become more significant to long-term colony health and more costly to a beekeeping operation, economic losses could threaten the industry's viability as well as the sustainability of pollination-dependent crop sectors across the country. The economic and agricultural impacts from the COVID-19 pandemic have exposed a vulnerability within Canada's beekeeping industry stemming from its dependency on imported labor and bees. Travel disruptions and border closures pose an ongoing threat to Canadian agriculture and apiculture in 2021 and highlight the need for Canada's beekeeping industry to strengthen domestic supply chains to minimize future risks.


Assuntos
Criação de Abelhas , COVID-19 , Animais , Abelhas , Canadá , Pandemias , SARS-CoV-2
15.
J Vet Med Educ ; 47(5): 619-631, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33231519

RESUMO

Limitations in workforce size and access to resources remain perennial challenges to greater progress in academic veterinary medicine and engagement between human and veterinary medicine (One Health). Ongoing resource constraints occur in part due to limited public understanding of the role veterinarians play in improving human health. One Health interactions, particularly through interdisciplinary collaborations in biomedical research, present constructive opportunities to inform resource policies and advance health care. To this end, inter-institutional partnerships between individual veterinary medical education programs (VMEPs) and several National Institutes of Health (NIH) intramural research programs have created synergies beyond those provided by individual programs. In the NIH Comparative Biomedical Scientist Training Program (CBSTP), interdisciplinary cross-training of veterinarians consisting of specialty veterinary medicine coupled with training in human disease research leading to a PhD, occurs collaboratively on both VMEP and NIH campuses. Pre-doctoral veterinary student research opportunities have also been made available. Through the CBSTP, NIH investigators and national biomedical science policy makers gain access to veterinary perspective and expertise, while veterinarians obtain additional opportunities for NIH-funded research training. CBSTP Fellows serve as de facto ambassadors enhancing visibility for the profession while in residence at NIH, and subsequently through a variety of university, industry, and government research appointments, as graduates. Thus, the CBSTP represents an inter-institutional opportunity that not only addresses critical needs for veterinarian-scientists in the biomedical workforce, but also simultaneously exposes national policy makers to veterinarian-scientists' specialized training, leading to more effective realization of One Health goals to benefit human and animal health.


Assuntos
Pesquisa Biomédica , Educação em Veterinária , Saúde Única , Médicos Veterinários , Animais , Objetivos , Humanos , National Institutes of Health (U.S.) , Estados Unidos
16.
Mol Cancer Ther ; 19(11): 2308-2318, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32943547

RESUMO

Melanomas arising in the mucous membranes are a rare and aggressive subtype. New treatment approaches are needed, yet accumulating sufficient evidence to improve patient outcomes is difficult. Clinical and pathological correlates between human and canine mucosal melanomas are substantial, and the relatively greater incidence of spontaneous naturally occurring mucosal melanoma in dogs represents a promising opportunity for predictive modeling. The genomic landscapes of human and canine mucosal melanoma appear highly diverse and generally lack recurring hotspot mutations associated with cutaneous melanomas. Although much remains to be determined, evidence indicates that Ras/MAPK and/or PI3K/AKT/mTOR signaling pathway activations are common in both species and may represent targets for therapeutic intervention. Sapanisertib, an mTORC1/2 inhibitor, was selected from a PI3K/mTOR inhibitor library to collaborate with MEK inhibition; the latter preclinical efficacy was demonstrated previously for canine mucosal melanoma. Combined inhibition of MEK and mTORC1/2, using trametinib and sapanisertib, produced apoptosis and cell-cycle alteration, synergistically reducing cell survival in canine mucosal melanoma cell lines with varying basal signaling activation levels. Compared with individual inhibitors, a staggered sapanisertib dose, coupled with daily trametinib, was optimal for limiting primary mucosal melanoma xenograft growth in mice, and tumor dissemination in a metastasis model, while minimizing hematologic and renal side effects. Inhibitors downmodulated respective signaling targets and the combination additionally suppressed pathway reciprocal crosstalk. The combination did not significantly change plasma sapanisertib pharmacokinetics; however, trametinib area under the curve was increased in the presence of sapanisertib. Targeting Ras/MAPK and PI3K/AKT/mTOR signal transduction pathways appear rational therapies for canine and human mucosal melanoma.


Assuntos
Alvo Mecanístico do Complexo 1 de Rapamicina/antagonistas & inibidores , Alvo Mecanístico do Complexo 2 de Rapamicina/antagonistas & inibidores , Melanoma/tratamento farmacológico , Melanoma/patologia , Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , Mucosa/efeitos dos fármacos , Mucosa/patologia , Inibidores de Proteínas Quinases/farmacologia , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Monitoramento de Medicamentos , Feminino , Humanos , Melanoma/etiologia , Camundongos , Mucosa/metabolismo , Resultado do Tratamento , Ensaios Antitumorais Modelo de Xenoenxerto
17.
J Econ Entomol ; 113(4): 1618-1627, 2020 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-32484511

RESUMO

The decline in managed honey bee (Hymenoptera: Apidae) colony health worldwide has had a significant impact on the beekeeping industry. To mitigate colony losses, beekeepers in Canada and around the world introduce queens into replacement colonies; however, Canada's short queen rearing season has historically limited the production of early season queens. As a result, Canadian beekeepers rely on the importation of foreign bees, particularly queens from warmer climates. Importing a large proportion of (often mal-adapted) queens each year creates a dependency on foreign bee sources, putting beekeeping, and pollination sectors at risk in the event of border closures, transportation issues, and other restrictions as is currently happening due to the 2020 Covid-19 pandemic. Although traditional Canadian queen production is unable to fully meet early season demand, increasing domestic queen production to meet mid- and later season demand would reduce Canada's dependency. As well, on-going studies exploring the potential for overwintering queens in Canada may offer a strategy to have early season domestic queens available. Increasing the local supply of queens could provide Canadian beekeepers, farmers, and consumers with a greater level of agricultural stability and food security. Our study is the first rigorous analysis of the economic feasibility of queen production. We present the costs of queen production for three Canadian operations over two years. Our results show that it can be profitable for a beekeeping operation in Canada to produce queen cells and mated queens and could be one viable strategy to increase the sustainability of the beekeeping industry.


Assuntos
Criação de Abelhas , Infecções por Coronavirus , Pandemias , Pneumonia Viral , Reprodução , Animais , Abelhas , Betacoronavirus , COVID-19 , Canadá , SARS-CoV-2
18.
Sci Rep ; 9(1): 14208, 2019 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-31578408

RESUMO

Insect pollination of flowers should change the within-season allocation of resources in plants. But the nature of this life-history response, particularly regarding allocation to roots, photosynthetic structures, and flowers, is empirically unresolved. This study uses a greenhouse experiment to investigate the effect of insect pollination on the reproductive output of 23 varieties of a globally important crop-canola (Brassica napus). Overall, insect pollination modified the functional characteristics (flower timing & effort, plant size & shape, seed packaging, root biomass) of canola, increasing seed production and quality, and pollinator dependence. Reproductive output and pollinator dependence were defined by strong trait trade-offs, which ranged from more pollinator-dependent plants favouring early reproductive effort, to less pollinator-dependent plants favouring a prolonged phenology with smaller plant size and lower seed quality. Seed production decreased with pollinator dependence in the absence of pollinators. The agricultural preference for hybrid varieties will increase seed production compared to open-pollinated varieties, but, even so, pollinators typically enhance seed production of both types. Our study elucidates how insect pollination alters the character and function of a globally important crop, supporting optimization of yield via intensification of insect pollination, and highlights the beneficial effects of insect pollination early in the season.


Assuntos
Brassica napus/crescimento & desenvolvimento , Insetos/fisiologia , Polinização/fisiologia , Reprodução/genética , Agricultura , Animais , Brassica napus/classificação , Flores/fisiologia , Reprodução/fisiologia , Estações do Ano , Sementes/genética , Sementes/crescimento & desenvolvimento
19.
Acad Pathol ; 6: 2374289519859841, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31321298

RESUMO

Validating digital pathology as substitute for conventional microscopy in diagnosis remains a priority to assure effectiveness. Intermodality concordance studies typically focus on achieving the same diagnosis by digital display of whole slide images and conventional microscopy. Assessment of discrete histological features in whole slide images, such as mitotic figures, has not been thoroughly evaluated in diagnostic practice. To further gauge the interchangeability of conventional microscopy with digital display for primary diagnosis, 12 pathologists examined 113 canine naturally occurring mucosal melanomas exhibiting a wide range of mitotic activity. Design reflected diverse diagnostic settings and investigated independent location, interpretation, and enumeration of mitotic figures. Intermodality agreement was assessed employing conventional microscopy (CM40×), and whole slide image specimens scanned at 20× (WSI20×) and at 40× (WSI40×) objective magnifications. An aggregate 1647 mitotic figure count observations were available from conventional microscopy and whole slide images for comparison. The intraobserver concordance rate of paired observations was 0.785 to 0.801; interobserver rate was 0.784 to 0.794. Correlation coefficients between the 2 digital modes, and as compared to conventional microscopy, were similar and suggest noninferiority among modalities, including whole slide image acquired at lower 20× resolution. As mitotic figure counts serve for prognostic grading of several tumor types, including melanoma, 6 of 8 pathologists retrospectively predicted survival prognosis using whole slide images, compared to 9 of 10 by conventional microscopy, a first evaluation of whole slide image for mitotic figure prognostic grading. This study demonstrated agreement of replicate reads obtained across conventional microscopy and whole slide images. Hence, quantifying mitotic figures served as surrogate histological feature with which to further credential the interchangeability of whole slide images for primary diagnosis.

20.
J Pathol Inform ; 10: 4, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30915258

RESUMO

BACKGROUND: Determining mitotic index by counting mitotic figures (MFs) microscopically from tumor areas with most abundant MF (hotspots [HS]) produces a prognostically useful tumor grading biomarker. However, interobserver concordance identifying MF and HS can be poorly reproducible. Immunolabeling MF, coupled with computer-automated counting by image analysis, can improve reproducibility. A computational system for obtaining MF values across digitized whole-slide images (WSIs) was sought that would minimize impact of artifacts, generate values clinically relatable to counting ten high-power microscopic fields of view typical in conventional microscopy, and that would reproducibly map HS topography. MATERIALS AND METHODS: Relatively low-resolution WSI scans (0.50 µm/pixel) were imported in grid-tile format for feature-based MF segmentation, from naturally occurring canine melanomas providing a wide range of proliferative activity. MF feature extraction conformed to anti-phospho-histone H3-immunolabeled mitotic (M) phase cells. Computer vision image processing was established to subtract key artifacts, obtain MF counts, and employ rotationally invariant feature extraction to map MF topography. RESULTS: The automated topometric HS (TMHS) algorithm identified mitotic HS and mapped select tissue tiles with greatest MF counts back onto WSI thumbnail images to plot HS topographically. Influence of dye, pigment, and extraneous structure artifacts was minimized. TMHS diagnostic decision support included image overlay graphics of HS topography, as well as a spreadsheet and plot of tile-based MF count values. TMHS performance was validated examining both mitotic HS counting and mapping functions. Significantly correlated TMHS MF mapping and metrics were demonstrated using repeat analysis with WSI in different orientation (R 2 = 0.9916) and by agreement with a pathologist (R 2 = 0.8605) as well as through assessment of counting function using an independently tuned object counting algorithm (OCA) (R 2 = 0.9482). Limits of agreement analysis support method interchangeability. MF counts obtained led to accurate patient survival prediction in all (n = 30) except one case. By contrast, more variable performance was documented when several pathologists examined similar cases using microscopy (pair-wise correlations, rho range = 0.7597-0.9286). CONCLUSIONS: Automated TMHS MF segmentation and feature engineering performance were interchangeable with both observer and OCA in digital mode. Moreover, enhanced HS location accuracy and superior method reproducibility were achieved using the automated TMHS algorithm compared to the current practice employing clinical microscopy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...