Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecol Evol ; 12(3): e8726, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35356581

RESUMO

Dietary studies in birds of prey involve direct observation and examination of food remains at resting and nesting sites. Although these methods accurately identify diet in raptors, they are time-consuming, resource-intensive, and associated with biases from the feeding ecology of raptors like Gyps vultures. Our study set out to estimate diet composition in Gyps vultures informed by stable isotopes that provide a good representation of assimilated diet from local systems.We hypothesized that differences in Gyps vulture diet composition is a function of sampling location and that these vultures move between Serengeti National Park and Selous Game Reserve to forage. We also theorized that grazing ungulates are the principal items in Gyps vulture diet.Through combined linear and Bayesian modeling, diet derived from δ13C in Gyps vultures consisted of grazing herbivores across sites, with those in Serengeti National Park consuming higher proportions of grazing herbivores (>87%). δ13C differences in vulture feather subsets did not indicate shifts in vulture diet and combined with blood δ13C, vultures fed largely on grazers for ~159 days before they were sampled. Similarly, δ15N values indicated Gyps vultures fed largely on herbivores. δ34S ratios separated where vultures fed when the two sites were compared. δ34S variation in vultures across sites resulted from baseline differences in plant δ34S values, though it is not possible to match δ34S to specific locations.Our findings highlight the relevance of repeated sampling that considers tissues with varying isotopic turnover and emerging Bayesian techniques for dietary studies using stable isotopes. Findings also suggested limited vulture movement between the two local systems. However, more sampling coupled with environmental data is required to fully comprehend this observation and its implications to Gyps vulture ecology and conservation.

2.
Mov Ecol ; 8: 37, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32968486

RESUMO

BACKGROUND: Current animal tracking studies are most often based on the application of external geolocators such as GPS and radio transmitters. While these technologies provide detailed movement data, they are costly to acquire and maintain, which often restricts sample sizes. Furthermore, deploying external geolocators requires physically capturing and recapturing of animals, which poses an additional welfare concern. Natural biomarkers provide an alternative, non-invasive approach for addressing a range of geolocation questions and can, because of relatively low cost, be collected from many individuals thereby broadening the scope for population-wide inference. METHODS: We developed a low-cost, minimally invasive method for distinguishing between local versus non-local movements of cattle using sulfur isotope ratios (δ34S) in cattle tail hair collected in the Greater Serengeti Ecosystem, Tanzania. RESULTS: We used a Generalized Additive Model to generate a predicted δ34S isoscape across the study area. This isoscape was constructed using spatial smoothers and underpinned by the positive relationship between δ34S values and lithology. We then established a strong relationship between δ34S from recent sections of cattle tail hair and the δ34S from grasses sampled in the immediate vicinity of an individual's location, suggesting δ34S in the hair reflects the δ34S in the environment. By combining uncertainty in estimation of the isoscape, with predictions of tail hair δ34S given an animal's position in the isoscape we estimated the anisotropic distribution of travel distances across the Serengeti ecosystem sufficient to detect movement using sulfur stable isotopes. CONCLUSIONS: While the focus of our study was on cattle, this approach can be modified to understand movements in other mobile organisms where the sulfur isoscape is sufficiently heterogeneous relative to the spatial scale of animal movements and where tracking with traditional methods is difficult.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...