Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Langmuir ; 31(37): 10145-53, 2015 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-25815562

RESUMO

The self-assembly of heterogeneous mesoscale systems is mediated by long-range interactions, including van der Waals forces. Diverse mesoscale architectures, built of optically and morphologically anisotropic elements such as DNA, collagen, single-walled carbon nanotubes, and inorganic materials, require a tool to calculate the forces, torques, interaction energies, and Hamaker coefficients that govern assembly in such systems. The mesoscale Lifshitz theory of van der Waals interactions can accurately describe solvent and temperature effects, retardation, and optically and morphologically anisotropic materials for cylindrical and planar interaction geometries. The Gecko Hamaker open-science software implementation of this theory enables new and sophisticated insights into the properties of important organic/inorganic systems: interactions show an extended range of magnitudes and retardation rates, DNA interactions show an imprint of base pair composition, certain SWCNT interactions display retardation-dependent nonmonotonicity, and interactions are mapped across a range of material systems in order to facilitate rational mesoscale design.


Assuntos
Solventes/química , Anisotropia , Modelos Químicos , Termodinâmica
2.
J Colloid Interface Sci ; 417: 278-84, 2014 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-24407688

RESUMO

Small changes in the dielectric response of a material result in substantial variations in the Hamaker coefficient of the van der Waals interactions, as demonstrated in a simplified approximate model as well as a realistic example of amorphous silica with and without an exciton peak. Variation of the dielectric response spectra at one particular frequency influences all terms in the Matsubara summation, making the total change in the Hamaker coefficient depend on the spectral changes not only at that frequency but also at the rest of the spectrum, properly weighted. The Matsubara terms most affected by the addition of a single peak are not those close to the position of the added peak, but are distributed doubly non-locally over the entire range of frequencies. A possibility of eliminating van der Waals interactions or at least drastically reducing them by spectral variation in a narrow regime of frequencies thus seems very remote.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...