Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 345: 118747, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37604107

RESUMO

Floodplains provide critical ecosystem services to people by regulating floodwaters and retaining sediments and nutrients. Geospatial analyses, field data collection, and modeling were integrated to quantify a portfolio of services that floodplains provide to downstream communities within the Chesapeake Bay and Delaware River watersheds. The portfolio of services included floodplain sediment and nutrient retention and flood regulation. Sediment and nutrient retention were quantified and valued for all non-tidal wadable streams in the Chesapeake Bay and Delaware River watersheds. Predicted nitrogen fluxes from measurements of streambanks and floodplain geomorphic changes were summarized at various scales (river basin, state, and county) and valued using a benefits transfer approach. Floodplain flood regulation services were assessed through a pilot study focused on the Schuylkill River watershed in the Delaware River watershed. Geospatial analysis and published flood frequency estimates were used to assess baseline and counterfactual (i.e., floodplain storage removed) scenarios. Flood regulation was valued using the Federal Emergency Management Agency's Hazus model to compare differences in structural damage to private residences under baseline and counterfactual scenarios. The estimated value of floodplain sediment and nutrient retention was $223 million United States dollars (USD) per year in the Chesapeake Bay watershed and $38 million USD per year in the Delaware River watershed. Sediment and nutrient retention benefits were offset by a streambank erosion cost of $123 million and $14 million USD annually in the Chesapeake and Delaware watersheds, respectively. In the Schuylkill River watershed floodplain flood regulation was valued at $860,000 USD per year, with an additional $7.2 million USD annually provided through floodplain sediment and nutrient retention. Together this portfolio of floodplain ecosystem services indicates that floodplains provide substantial benefits to people by trapping nutrients and storing floodwaters.


Assuntos
Ecossistema , Inundações , Humanos , Delaware , Baías , Projetos Piloto
2.
Hydrol Process ; 34(2): 387-403, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32063664

RESUMO

Green stormwater infrastructure implementation in urban watersheds has outpaced our understanding of practice effectiveness on streamflow response to precipitation events. Long-term monitoring of experimental suburban watersheds in Clarksburg, Maryland, USA, provided an opportunity to examine changes in event-based streamflow metrics in two treatment watersheds that transitioned from agriculture to suburban development with a high density of infiltration-focused stormwater control measures (SCMs). Urban Treatment 1 has predominantly single family detached housing with 33% impervious cover and 126 SCMs. Urban Treatment 2 has a mix of single family detached and attached housing with 44% impervious cover and 219 SCMs. Differences in streamflow-event magnitude and timing were assessed using a before-after-control-reference-impact design to compare urban treatment watersheds with a forested control and an urban control with detention-focused SCMs. Streamflow and precipitation events were identified from 14 years of sub-daily monitoring data with an automated approach to characterize peak streamflow, runoff yield, runoff ratio, streamflow duration, time to peak, rise rate, and precipitation depth for each event. Results indicated that streamflow magnitude and timing were altered by urbanization in the urban treatment watersheds, even with SCMs treating 100% of the impervious area. The largest hydrologic changes were observed in streamflow magnitude metrics, with greater hydrologic change in Urban Treatment 2 compared with Urban Treatment 1. Although streamflow changes were observed in both urban treatment watersheds, SCMs were able to mitigate peak flows and runoff volumes compared with the urban control. The urban control had similar impervious cover to Urban Treatment 2, but Urban Treatment 2 had more than twice the precipitation depth needed to initiate a flow response and lower median peak flow and runoff yield for events less than 20 mm. Differences in impervious cover between the Urban Treatment watersheds appeared to be a large driver of differences in streamflow response, rather than SCM density. Overall, use of infiltration-focused SCMs implemented at a watershed-scale did provide enhanced attenuation of peak flow and runoff volumes compared to centralized-detention SCMs.

3.
Sci Total Environ ; 714: 136503, 2020 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-32018946

RESUMO

Infiltration-based green infrastructure has become a popular means of reducing stormwater hazards in urban areas. However, the long-term effects of green infrastructure on the geochemistry of roadside environments are poorly defined, particularly given the considerable roadside legacy metal contamination from historic industrial activity and vehicle emissions (e.g., Pb). Most current research on green infrastructure geochemistry is restricted to time periods of less than a year or limited sets of chemical species. This further limits our understanding of systems that evolve over time and are subject to seasonal variability. Between 2016 and 2018, two infiltration trenches in Pittsburgh, PA, were monitored to determine infiltration rates and dissolved nutrient and metal content. The trench water was analyzed to characterize seasonal patterns in both trench function and chemistry. Shifting patterns in infiltration rate and geochemical activity show trends corresponding with seasonal changes. Trench function is dependent on the local water table, with the highest infiltration rates occurring when evapotranspiration is active and groundwater elevation is low. Two seasonal chemical patterns were identified. The first is driven by road salt application in the winter and interaction of the salt pulse increase Pb and Cu concentrations. The second is driven by the formation of summer reducing environments that increase dissolved Fe and Mn. These findings suggest that chemical and hydrological activity in infiltration-based green infrastructure varies seasonally and may remobilize legacy contamination.

4.
Sci Total Environ ; 655: 70-83, 2019 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-30469070

RESUMO

Complex chemical mixtures have been widely reported in larger streams but relatively little work has been done to characterize them and assess their potential effects in headwater streams. In 2014, the United States Geological Survey (USGS) sampled 54 Piedmont streams over ten weeks and measured 475 unique organic compounds using five analytical methods. Maximum and median exposure conditions were evaluated in relation to watershed characteristics and for potential biological effects using multiple lines of evidence. Results demonstrate that mixed-contaminant exposures are ubiquitous and varied in sampled headwater streams. Approximately 56% (264) of the 475 compounds were detected at least once across all sites. Cumulative maximum concentrations ranged 1,922-162,346ngL-1 per site. Chemical occurrence significantly correlated to urban land use but was not related to presence/absence of wastewater treatment facility discharges. Designed bioactive chemicals represent about 2/3rd of chemicals detected, notably pharmaceuticals and pesticides, qualitative evidence for possible adverse biological effects. Comparative Toxicogenomics Database chemical-gene associations applied to maximum exposure conditions indicate >12,000 and 2,900 potential gene targets were predicted at least once across all sites for fish and invertebrates, respectively. Analysis of cumulative exposure-activity ratios provided additional evidence that, at a minimum, transient exposures with high probability of molecular effects to vertebrates were common. Finally, cumulative detections and concentrations correlated inversely with invertebrate metrics from in-stream surveys. The results demonstrate widespread instream exposure to extensive contaminant mixtures and compelling multiple lines of evidence for adverse effects on aquatic communities.


Assuntos
Organismos Aquáticos/efeitos dos fármacos , Misturas Complexas/toxicidade , Monitoramento Ambiental/métodos , Modelos Teóricos , Rios/química , Poluentes Químicos da Água , Misturas Complexas/análise , Ecossistema , Previsões , Estados Unidos , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
5.
J Environ Manage ; 220: 65-76, 2018 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-29758400

RESUMO

Floodplains provide critical ecosystem services to local and downstream communities by retaining floodwaters, sediments, and nutrients. The dynamic nature of floodplains is such that these areas can both accumulate sediment and nutrients through deposition, and export material downstream through erosion. Therefore, estimating floodplain sediment and nutrient retention should consider the net flux of both depositional and erosive processes. An ecosystem services framework was used to quantify and value the sediment and nutrient ecosystem service provided by floodplains in the Difficult Run watershed, a small (151 km2) suburban watershed located in the Piedmont of Virginia (USA). A sediment balance was developed for Difficult Run and two nested watersheds. The balance included upland sediment delivery to streams, stream bank flux, floodplain flux, and stream load. Upland sediment delivery was estimated using geospatial datasets and a modified Revised Universal Soil Loss Equation. Predictive models were developed to extrapolate field measurements of the flux of sediment, sediment-bound nitrogen (N), and sediment-bound phosphorus (P) from stream banks and floodplains to 3232 delineated stream segments in the study area. A replacement cost approach was used to estimate the economic value of the sediment and nutrient retention ecosystem service based on estimated net stream bank and floodplain flux of sediment-bound N for all streams in the study area. Results indicated the net fluvial fluxes of sediment, sediment-bound N, and sediment-bound P were -10,439 Mg yr-1 (net export), 57,300 kg-N yr-1 (net trapping), and 98 kg-P yr-1(net trapping), respectively. For sediment, floodplain retention was offset by substantial losses from stream bank erosion, particularly in headwater catchments, resulting in a net export of sediment. Nutrient retention in the floodplain exceeded that lost through stream bank erosion resulting in net retention of nutrients (TN and TP). Using a conservative cost estimate of $12.69 (USD) per kilogram of nitrogen, derived from wastewater treatment costs, the estimated annual value for sediment and nutrient retention on Difficult Run floodplains was $727,226 ±â€¯194,220 USD/yr. Values and differences in floodplain nitrogen retention among stream reaches can be used to target areas for floodplain conservation and stream restoration. The methods presented are scalable and transferable to other areas if appropriate datasets are available for validation.


Assuntos
Ecossistema , Monitoramento Ambiental , Nitrogênio , Fósforo , Solo , Virginia , Movimentos da Água
6.
J Environ Manage ; 203(Pt 1): 286-298, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-28803153

RESUMO

Stormwater control measures (SCMs) are used to retain stormwater and pollutants. SCMs have traditionally been installed in a centralized manner using detention to mitigate peak flows. Recently, distributed SCM networks that treat runoff near the source have been increasingly utilized. The aim of this study was to evaluate differences among watersheds that vary in SCM arrangement by assessing differences in baseflow nutrient (NOx-N and PO4-) concentrations and fluxes, stormflow export of suspended sediments and particulate phosphorus (PP), and runoff characteristics. A paired watershed approach was used to compare export between 2004 and 2016 from one forested watershed (For-MD), one suburban watershed with centralized SCMs (Cent-MD), and one suburban watershed with distributed SCMs (Dist-MD). Results indicated baseflow nitrate (NOx-N) concentrations typically exceeded 1 mg-N/L in all watersheds and were highest in Dist-MD. Over the last 10 years in Dist-MD, nitrate concentrations in both stream baseflow and in a groundwater well declined as land use shifted from agriculture to suburban. Baseflow nitrate export temporarily increased during the construction phase of SCM development in Dist-MD. This temporary pulse of nitrate may be attributed to the conversion of sediment control facilities to SCMs and increased subsurface flushing as infiltration SCMs came on line. During storm flow, Dist-MD tended to have less runoff and lower maximum specific discharge than Cent-MD for small events (<1.3 cm), but runoff responses became increasingly similar to Cent-MD with increasing precipitation (>1.3 cm). Mass export estimated during paired storm events indicated Dist-MD exported 30% less sediment and 31% more PP than Cent-MD. For large precipitation events, export of sediment and PP was similar among all three watersheds. Results suggest that distributed SCMs can reduce runoff and sediment loads during small rain events compared to centralized SCMs, but these differences become less evident for large events when peak discharge likely leads to substantial bank erosion.


Assuntos
Fósforo , Movimentos da Água , Monitoramento Ambiental , Nitrogênio , Chuva
7.
Environ Sci Technol ; 49(5): 2724-32, 2015 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-25660388

RESUMO

Aquatic ecosystems are sensitive to the modification of hydrologic regimes, experiencing declines in stream health as the streamflow regime is altered during urbanization. This study uses streamflow records to quantify the type and magnitude of hydrologic changes across urbanization gradients in nine U.S. cities (Atlanta, GA, Baltimore, MD, Boston, MA, Detroit, MI, Raleigh, NC, St. Paul, MN, Pittsburgh, PA, Phoenix, AZ, and Portland, OR) in two physiographic settings. Results indicate similar development trajectories among urbanization gradients, but heterogeneity in the type and magnitude of hydrologic responses to this apparently uniform urban pattern. Similar urban patterns did not confer similar hydrologic function. Study watersheds in landscapes with level slopes and high soil permeability had less frequent high-flow events, longer high-flow durations, lower flashiness response, and lower flow maxima compared to similarly developed watersheds in landscape with steep slopes and low soil permeability. Our results suggest that physical characteristics associated with level topography and high water-storage capacity buffer the severity of hydrologic changes associated with urbanization. Urbanization overlain upon a diverse set of physical templates creates multiple pathways toward hydrologic impairment; therefore, we caution against the use of the urban homogenization framework in examining geophysically dominated processes.


Assuntos
Ecossistema , Hidrologia , Rios , Urbanização , Solo , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...