Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 11(2): 2490-2499, 2019 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-30516361

RESUMO

In this work, we examine the effect of microstructure on ion-migration-induced photoluminescence (PL) quenching in methylammonium lead iodide perovskite films. Thin films were fabricated by two methods: spin-coating, which results in randomly oriented perovskite grains, and zone-casting, which results in aligned grains. As an external bias is applied to these films, migration of ions causes a quenching of the PL signal in the vicinity of the anode. The evolution of this PL-quenched zone is less uniform in the spin-coated devices than in the zone-cast ones, suggesting that the relative orientation of the crystal grains plays a significant role in the migration of ions within polycrystalline perovskite. We simulate this effect via a simple Ising model of ionic motion across grains in the perovskite thin film. The results of this simulation align closely with the observed experimental results, further solidifying the correlation between crystal grain orientation and the rate of ionic transport.

2.
ACS Appl Mater Interfaces ; 9(7): 6220-6227, 2017 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-28098451

RESUMO

It is generally considered that the injection of charges into an active layer of an organic light-emitting diode (OLED) is solely determined by the energetic injection barrier formed at the device interfaces. Here, we demonstrate that the density of surface states of the electron-injecting ZnO layer has a profound effect on both the charge injection and the overall performance of the OLED device. Introducing a dopant into ZnO reduces both the energy depth and density of surface states without altering the position of the energy levels-thus, the magnitude of the injection barrier formed at the organic/ZnO interface remains unchanged. Changes observed in the density of surface states result in an improved electron injection and enhanced luminescence of the device. We implemented a numerical simulation, modeling the effects of energetics and the density of surface states on the electron injection, demonstrating that both contributions should be considered when choosing the appropriate injection layer.

3.
Adv Mater ; 28(12): 2446-54, 2016 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-26823239

RESUMO

The migration and accumulation of iodide ions create a modulation of the respective interfacial barriers causing the hysteresis in solar cells based on methylammonium lead iodide perovskites. Iodide ions are identified as the migrating species by measuring temperature dependent current-transients and photoelectron spectroscopy. The involved changes in the built-in potential due to ion migration are directly measured by electroabsorption spectroscopy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...