Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; 5(5): 1700850, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29876211

RESUMO

Melting presents one of the most prominent phenomena in condensed matter science. Its microscopic understanding, however, is still fragmented, ranging from simplistic theory to the observation of melting point depressions. Here, a multimethod experimental approach is combined with computational simulation to study the microscopic mechanism of melting between these two extremes. Crystalline structures are exploited in which melting occurs into a metastable liquid close to its glass transition temperature. The associated sluggish dynamics concur with real-time observation of homogeneous melting. In-depth information on the structural signature is obtained from various independent spectroscopic and scattering methods, revealing a step-wise nature of the transition before reaching the liquid state. A kinetic model is derived in which the first reaction step is promoted by local instability events, and the second is driven by diffusive mobility. Computational simulation provides further confirmation for the sequential reaction steps and for the details of the associated structural dynamics. The successful quantitative modeling of the low-temperature decelerated melting of zeolite crystals, reconciling homogeneous with heterogeneous processes, should serve as a platform for understanding the inherent instability of other zeolitic structures, as well as the prolific and more complex nanoporous metal-organic frameworks.

2.
Phys Chem Chem Phys ; 15(22): 8506-19, 2013 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-23657606

RESUMO

For the first time a detailed structural model has been determined which shows how the lone-pairs of electrons are arranged relative to each other in a glass network containing lone-pair cations. High energy X-ray and neutron diffraction patterns of a very high lead content silicate glass (80PbO·20SiO2) have been used to build three-dimensional models using empirical potential structure refinement. Coordination number and bond angle distributions reveal structural similarity to crystalline Pb11Si3O17 and α- and ß-PbO, and therefore strong evidence for a plumbite glass network built from pyramidal [PbO(m)] polyhedra (m ~ 3-4), with stereochemically active lone-pairs, although with greater disorder in the first coordination shell of lead compared to the first coordination shell of silicon. The oxygen atoms are coordinated predominantly to four cations. Explicit introduction of lone-pair entities into some models leads to modification of the local Pb environment, whilst still allowing for reproduction of the measured diffraction patterns, thus demonstrating the non-uniqueness of the solutions. Nonetheless, the models share many features with crystalline Pb11Si3O17, including the O-Pb-O bond angle distribution, which is more highly structured than reported for lower Pb content glasses using reverse Monte Carlo techniques. The lone-pair separation of 2.85 Å in the model glasses compares favourably with that estimated in α-PbO as 2.88 Å, and these lone-pairs organise to create voids in the glass, just as they create channels in Pb11Si3O17 and interlayer spaces in the PbO polymorphs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...