Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Geosci ; 16(8): 671-674, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37564377

RESUMO

The melting of the Greenland Ice Sheet is accelerating, with glaciers shifting from marine to land termination and potential consequences for fjord ecosystems downstream. Monthly samples in 2016 in two fjords in southwest Greenland show that subglacial discharge from marine-terminating glaciers sustains high phytoplankton productivity that is dominated by diatoms and grazed by larger mesozooplankton throughout summer. In contrast, melting of land-terminating glaciers results in a fjord ecosystem dominated by bacteria, picophytoplankton and smaller zooplankton, which has only one-third of the annual productivity and half the CO2 uptake compared to the fjord downstream from marine-terminating glaciers.

2.
Int J Ment Health Nurs ; 32(3): 938-944, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36715172

RESUMO

There has been an international surge towards online, digital, and telehealth mental health services, further amplified during COVID-19. Implementation and integration of technological innovations, including artificial intelligence (AI), have increased with the intention to improve clinical, governance, and administrative decision-making. Mental health nurses (MHN) should consider the ramifications of these changes and reflect on their engagement with AI. It is time for mental health nurses to demonstrate leadership in the AI mental health discourse and to meaningfully advocate that safety and inclusion of end users' of mental health service interests are prioritized. To date, very little literature exists about this topic, revealing limited engagement by MHNs overall. The aim of this article is to provide an overview of AI in the mental health context and to stimulate discussion about the rapidity and trustworthiness of AI related to the MHN profession. Despite the pace of progress, and personal life experiences with AI, a lack of MHN leadership about AI exists. MHNs have a professional obligation to advocate for access and equity in health service distribution and provision, and this applies to digital and physical domains. Trustworthiness of AI supports access and equity, and for this reason, it is of concern to MHNs. MHN advocacy and leadership are required to ensure that misogynist, racist, discriminatory biases are not favoured in the development of decisional support systems and training sets that strengthens AI algorithms. The absence of MHNs in designing technological innovation is a risk related to the adequacy of the generation of services that are beneficial for vulnerable people such as tailored, precise, and streamlined mental healthcare provision. AI developers are interested to focus on person-like solutions; however, collaborations with MHNs are required to ensure a person-centred approach for future mental healthcare is not overlooked.


Assuntos
COVID-19 , Enfermagem Psiquiátrica , Humanos , Inteligência Artificial , Enfermagem Psiquiátrica/educação , Saúde Mental , Atenção à Saúde
3.
Environ Sci Technol ; 55(13): 9372-9383, 2021 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-34110803

RESUMO

The chemical speciation of iron (Fe) in oceans is influenced by ambient pH, dissolved oxygen, and the concentrations and strengths of the binding sites of dissolved organic matter (DOM). Here, we derived new nonideal competitive adsorption (NICA) constants for Fe(III) binding to marine DOM via pH-Fe titrations. We used the constants to calculate Fe(III) speciation and derive the apparent Fe(III) solubility (SFe(III)app) in the ambient water column across the Peruvian shelf and slope region. We define SFe(III)app as the sum of aqueous inorganic Fe(III) species and Fe(III) bound to DOM at a free Fe (Fe3+) concentration equal to the limiting solubility of Fe hydroxide (Fe(OH)3(s)). A ca. twofold increase in SFe(III)app in the oxygen minimum zone (OMZ) compared to surface waters is predicted. The increase results from a one order of magnitude decrease in H+ concentration which impacts both Fe(III) hydroxide solubility and organic complexation. A correlation matrix suggests that changes in pH have a larger impact on SFe(III)app and Fe(III) speciation than DOM in this region. Using Fe(II) measurements, we calculated ambient DFe(III) and compared the value with the predicted SFe(III)app. The underlying distribution of ambient DFe(III) largely reflected the predicted SFe(III)app, indicating that decreased pH as a result of OMZ intensification and ocean acidification may increase SFe(III)app with potential impacts on surface DFe inventories.


Assuntos
Ferro , Água do Mar , Concentração de Íons de Hidrogênio , Peru , Solubilidade
4.
Nat Commun ; 12(1): 3030, 2021 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-34031401

RESUMO

Approximately half of the freshwater discharged from the Greenland and Antarctic Ice Sheets enters the ocean subsurface as a result of basal ice melt, or runoff draining via the grounding line of a deep ice shelf or marine-terminating glacier. Around Antarctica and parts of northern Greenland, this freshwater then experiences prolonged residence times in large cavities beneath floating ice tongues. Due to the inaccessibility of these cavities, it is unclear how they moderate the freshwater associated supply of nutrients such as iron (Fe) to the ocean. Here, we show that subglacial dissolved Fe export from Nioghalvfjerdsbrae (the '79°N Glacier') is decoupled from particulate inputs including freshwater Fe supply, likely due to the prolonged ~162-day residence time of Atlantic water beneath Greenland's largest floating ice-tongue. Our findings indicate that the overturning rate and particle-dissolved phase exchanges in ice cavities exert a dominant control on subglacial nutrient supply to shelf regions.

5.
Sci Rep ; 11(1): 2382, 2021 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-33504867

RESUMO

A spectrophotometric approach for quantification of dissolved manganese (DMn) with 1-(2-pyridylazo)-2-naphthol (PAN) has been adapted for in situ application in coastal and estuarine waters. The analyser uses a submersible microfluidic lab-on-chip device, with low power (~ 1.5 W) and reagent consumption (63 µL per sample). Laboratory characterization showed an absorption coefficient of 40,838 ± 1127 L⋅mol-1⋅cm-1 and a detection limit of 27 nM, determined for a 34.6 mm long optical detection cell. Laboratory tests showed that long-term stability of the PAN reagent was achieved by addition of 4% v/v of a non-ionic surfactant (Triton-X100). To suppress iron (Fe) interferences with the PAN reagent, the Fe(III) masking agents deferoxamine mesylate (DFO-B) or disodium 4,5-dihydroxy-1,3-benzenedisulfonate (Tiron) were added and their Fe masking efficiencies were investigated. The analyser was tested during a deployment over several weeks in Kiel Fjord (Germany), with successful acquisition of 215 in situ data points. The time series was in good agreement with DMn concentrations determined from discretely collected samples analysed via inductively coupled plasma mass spectrometry (ICP-MS), exhibiting a mean accuracy of 87% over the full deployment duration (with an accuracy of > 99% for certain periods) and clear correlations to key hydrographic parameters.

6.
Sci Rep ; 10(1): 15230, 2020 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-32943713

RESUMO

Climate change has led to a ~ 40% reduction in summer Arctic sea-ice cover extent since the 1970s. Resultant increases in light availability may enhance phytoplankton production. Direct evidence for factors currently constraining summertime phytoplankton growth in the Arctic region is however lacking. GEOTRACES cruise GN05 conducted a Fram Strait transect from Svalbard to the NE Greenland Shelf in summer 2016, sampling for bioessential trace metals (Fe, Co, Zn, Mn) and macronutrients (N, Si, P) at ~ 79°N. Five bioassay experiments were conducted to establish phytoplankton responses to additions of Fe, N, Fe + N and volcanic dust. Ambient nutrient concentrations suggested N and Fe were deficient in surface seawater relative to typical phytoplankton requirements. A west-to-east trend in the relative deficiency of N and Fe was apparent, with N becoming more deficient towards Greenland and Fe more deficient towards Svalbard. This aligned with phytoplankton responses in bioassay experiments, which showed greatest chlorophyll-a increases in + N treatment near Greenland and + N + Fe near Svalbard. Collectively these results suggest primary N limitation of phytoplankton growth throughout the study region, with conditions potentially approaching secondary Fe limitation in the eastern Fram Strait. We suggest that the supply of Atlantic-derived N and Arctic-derived Fe exerts a strong control on summertime nutrient stoichiometry and resultant limitation patterns across the Fram Strait region.

7.
Nat Commun ; 11(1): 556, 2020 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-31992707

RESUMO

Rivers are a major supplier of particulate and dissolved material to the ocean, but their role as sources of bio-essential dissolved iron (dFe) is thought to be limited due to rapid, efficient Fe removal during estuarine mixing. Here, we use trace element and radium isotope data to show that the influence of the Congo River margin on surface Fe concentrations is evident over 1000 km from the Congo outflow. Due to an unusual combination of high Fe input into the Congo-shelf-zone and rapid lateral transport, the Congo plume constitutes an exceptionally large offshore dFe flux of 6.8 ± 2.3 × 108 mol year-1. This corresponds to 40 ± 15% of atmospheric dFe input into the South Atlantic Ocean and makes a higher contribution to offshore Fe availability than any other river globally. The Congo River therefore contributes significantly to relieving Fe limitation of phytoplankton growth across much of the South Atlantic.


Assuntos
Compostos de Ferro/análise , Ferro/análise , Rios/química , Água do Mar/química , Oceano Atlântico , Congo , Monitoramento Ambiental , Sedimentos Geológicos/química , Oceanos e Mares , Fitoplâncton/metabolismo , Radioisótopos/análise , Rádio (Elemento)/análise , Oligoelementos , Poluentes Químicos da Água/análise
8.
Nat Commun ; 10(1): 5261, 2019 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-31748607

RESUMO

Marine phytoplankton growth at high latitudes is extensively limited by iron availability. Icebergs are a vector transporting the bioessential micronutrient iron into polar oceans. Therefore, increasing iceberg fluxes due to global warming have the potential to increase marine productivity and carbon export, creating a negative climate feedback. However, the magnitude of the iceberg iron flux, the subsequent fertilization effect and the resultant carbon export have not been quantified. Using a global analysis of iceberg samples, we reveal that iceberg iron concentrations vary over 6 orders of magnitude. Our results demonstrate that, whilst icebergs are the largest source of iron to the polar oceans, the heterogeneous iron distribution within ice moderates iron delivery to offshore waters and likely also affects the subsequent ocean iron enrichment. Future marine productivity may therefore be not only sensitive to increasing total iceberg fluxes, but also to changing iceberg properties, internal sediment distribution and melt dynamics.


Assuntos
Camada de Gelo/química , Ferro/análise , Regiões Antárticas , Regiões Árticas , Argentina , Carbono/metabolismo , Chile , Congelamento , Sedimentos Geológicos/análise , Sedimentos Geológicos/química , Aquecimento Global , Groenlândia , Islândia , Ferro/metabolismo , Oceanos e Mares , Fitoplâncton/metabolismo , Água do Mar/análise , Água do Mar/química , Svalbard
9.
Sci Rep ; 7: 43436, 2017 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-28266529

RESUMO

Hydrogen peroxide (H2O2) is present ubiquitously in marine surface waters where it is a reactive intermediate in the cycling of many trace elements. Photochemical processes are considered the dominant natural H2O2 source, yet cannot explain nanomolar H2O2 concentrations below the photic zone. Here, we determined the concentration of H2O2 in full depth profiles across three ocean basins (Mediterranean Sea, South Atlantic and South Pacific Oceans). To determine the accuracy of H2O2 measurements in the deep ocean we also re-assessed the contribution of interfering species to 'apparent H2O2', as analysed by the luminol based chemiluminescence technique. Within the vicinity of coastal oxygen minimum zones, accurate measurement of H2O2 was not possible due to interference from Fe(II). Offshore, in deep (>1000 m) waters H2O2 concentrations ranged from 0.25 ± 0.27 nM (Mediterranean, Balearics-Algeria) to 2.9 ± 2.2 nM (Mediterranean, Corsica-France). Our results indicate that a dark, pelagic H2O2 production mechanism must occur throughout the deep ocean. A bacterial source of H2O2 is the most likely origin and we show that this source is likely sufficient to account for all of the observed H2O2 in the deep ocean.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...